Gliomas are tumors of the central nervous system, which usually start within the glial cells of the brain or the spinal cord. These are extremely migratory and diffusive tumors, which quickly expand to the surrounding regions in the brain. There are different grades of gliomas, hinting about their growth patterns and aggressiveness and potential response to the treatment. As part of routine clinical procedure for gliomas, both radiology images (rad), such as multiparametric MR images, and digital pathology images (path) from tissue samples are acquired. Each of these data streams are used separately for prediction of the survival outcome of gliomas, however, these images provide complimentary information, which can be used in an integrated way for better prediction. There is a need to develop an image-based method that can utilise the information extracted from these imaging sequences in a synergistic way to predict patients’ outcome and to potentially assist in building comprehensive and patient-centric treatment plans. The objective of this study is to improve survival prediction outcomes of gliomas by integrating radiology and pathology imaging. Multiparametric magnetic resonance imaging (MRI), rad images, and path images of glioma patients were acquired from The Cancer Imaging Archive. Quantitative imaging features were extracted from tumor regions in rad and path images. The features were given as input to an ensemble regression machine learning pipeline, including support vector regression, AdaBoost, gradient boost, and random forest. The performance of the model was evaluated in several configurations, including leave-one-out, five-fold cross-validation, and split-train-test. Moreover, the quantitative performance evaluations were conducted separately in the complete cohort (n = 171), high-grade gliomas (HGGs), n = 75, and low-grade gliomas (LGGs), n = 96. The combined rad and path features outperformed individual feature types in all the configurations and datasets. In leave-one-out configuration, the model comprising both rad and path features was successfully validated on the complete dataset comprising HGFs and LGGs (R=0.84 p=2.2×10−16). The Kaplan–Meier curves generated on the predictions of the proposed model yielded a hazard ratio of 3.314 [95%CI:1.718−6.394], log−rank(P)=2×10−4 on combined rad and path features. Conclusion: The proposed approach emphasizes radiology experts and pathology experts’ clinical workflows by creating prognosticators upon ‘rad’ radiology images and digital pathology ‘path’ images independently, as well as combining the power of both, also through delivering integrated analysis, that can contribute to a collaborative attempt between different departments for administration of patients with gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.