The is wide consensus that combustion of fossil fuels and rising greenhouse gas emissions in the atmosphere are accelerating global warming. To avoid the dilemma of need for fossil fuels to provide energy supply and the need to reduce fossil fuel related emissions, it is critical to promote renewable energy as a viable option to satisfy the world's energy requirements. However, employing renewables to generate power necessitates the use of bulk storage to accommodate discrepancies related to where and when renewable energy is produced versus where and when it is needed. Underground hydrogen storage has the potential to support establishment of hydrogen as a reliable source of clean energy across the planet. Where present, depleted oil and gas reservoirs, due to their existing infrastructure, can prove to be an attractive asset for underground hydrogen storage. One of the main challenges involved in the storage of hydrogen in the depleted oil and gas reservoirs is related to wellbore integrity. When hydrogen is injected or produced in the subsurface, it may get bin contact with cement around the wellbores. Hence it is necessary to investigate the effects of hydrogen interacting with the cement sheath. To study this in the laboratory, a core holder capable of simulating the wellbore conditions is used to conduct the tests. A 2" long, 1.5" diameter cement sample was placed inside the core holder and hydrogen was injected into it. Hydrogen was also injected into wet cement slurry to investigate possible stability of the cement samples. The effects of injecting hydrogen on set cement are studied using a CT Scanner which demonstrates if there is any formation of cracks and micro-annuli in the cement. The cement sample is crushed afterwards, and the presence of hydrogen particles in the structure of cement is evaluated by X -Ray Diffraction. A neat 15.5 lbs./gal Class "H" cement which is common in the industry is used in this study. Well integrity is a key success factor to establish the viability of underground hydrogen storage in the subsurface. For that we analyzed if the cement is good enough for hydrogen to be stored in depleted oil and gas reservoirs. We further studied the integrity of newly drilled wells when exposed to hydrogen.
Near-wellbore damage, which significantly reduces hydrocarbon production, can happen during drilling, cementing, perforation, completion, and stimulation operations. The most common technique to remove or bypass this damage is matrix acidizing. The effects of matrix acidizing injection pressure on acid penetration rate, chemical reaction rate, solubility, porosity, and permeability of Marcellus core samples were investigated in this experimental study. To achieve a successful acid treatment, acid type and concentration must be carefully selected. The results of the X-ray powder diffraction (XRD) and the solubility test revealed that 15 wt.% hydrochloric acid (HCl) is the optimum acid. Matrix acidizing treatments were implemented on nine core samples, taken from Marcellus (shale gas reservoir), at the reservoir temperature (66 °C), confining pressure of 10.35 MPa, and three different acid injection pressures (1.72, 3.45, and 5.17 MPa). The results showed that performing acid treatments on the samples containing continuous carbonate layers created highly permeable channels (wormholes) resulting in significant improvement, up to 3900%, in the permeability of the samples. Additionally, the results of the acid penetration rate, chemical reaction rate, solubility, porosity, and permeability revealed that increasing the acid injection pressure resulted in increases in the aforementioned properties of the samples. The results also revealed that any increase in the injection pressure above 3.45 MPa did not demonstrate any significant enhancements in the properties of the samples. The results of the XRD analysis revealed that matrix-acidizing treatments dissolved 23.2% of calcite and 0.4% of dolomite existed in the samples.
Unconventional resources, such as Eagle Ford formation, are commonly classified for their ultra-low permeability, where pore sizes are in nano-scale and pore-conductivity is low, causing several challenges in evaluating unconventional-rock properties. Several experimental parameters (e.g., diffusion time of gas, gas injection pressure, method of permeability measurement, and confining pressure cycling) must be considered when evaluating the ultra-low permeability rock's physical and dynamic elastic properties measurements, where erroneous evaluations could be avoided. Characterizing ultra-low permeability samples' physical and elastic properties helps researchers obtain more reliable information leading to successful evaluations. In this study, 24 Eagle Ford core samples' physical and dynamic elastic properties were evaluated. Utilizing longer diffusion time and higher helium injection pressure, applying complex transient method, and cycling confining pressure were considered for porosity, permeability, and velocities measurements. Computerized tomography (CT) scan, porosity, permeability, and ultrasonic wave velocities were conducted on the core samples. Additionally, X-ray Diffraction (XRD) analysis was conducted to determine the mineralogical compositions. Porosity was measured at 2.07 MPa injection pressure for 24 h, and the permeability was measured using a complex transient method. P- and S-wave velocities were measured at two cycles of five confining pressures (up to 68.95 MPa). The XRD analysis results showed that the tested core samples had an average of 81.44% and 11.68% calcite and quartz, respectively, with a minor amount of clay minerals. The high content of calcite and quartz in shale yields higher velocities, higher Young's modulus, and lower Poisson's ratio, which enhances the brittleness that is an important parameter for well stimulation design (e.g., hydraulic fracturing). The results of porosity and permeability showed that porosity and permeability vary between 5.3–9.79% and 0.006–12 µD, respectively. The Permeability–porosity relation of samples shows a very weak correlation. P- and S-wave velocities results display a range of velocity up to 6206 m/s and 3285 m/s at 68.95 MPa confining pressure, respectively. Additionally, S-wave velocity is approximately 55% of P-wave velocity. A correlation between both velocities is established at each confining pressure, indicating a strong correlation. Results illustrated that applying two cycles of confining pressure impacts both velocities and dynamic elastic moduli. Ramping up the confining pressure increases both velocities owing to compaction of the samples and, in turn, increases dynamic Young's modulus and Poisson's ratio while decreasing bulk compressibility. Moreover, the results demonstrated that the above-mentioned parameters' values (after decreasing the confining pressure to 13.79 MPa) differ from the initial values due to the hysteresis loop, where the loop is slightly opened, indicating that the alteration is non-elastic. The findings of this study provide detailed information about the rock physical and dynamic elastic properties of one of the largest unconventional resources in the U.S.A, the Eagle Ford formation, where direct measurements may not be cost-effective or feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.