The tremendous applications of human activity recognition are surging its span from health monitoring systems to virtual reality applications. Thus, the automatic recognition of daily life activities has become signi cant for numerous applications. In recent years, many datasets have been proposed to train the machine learning models for e cient monitoring and recognition of human daily living activities.However, the performance of machine learning models in activity recognition is crucially affected when there are incomplete activities in a dataset, i.e., having missing samples in dataset captures. Therefore, in this work, we propose a methodology for extrapolating the missing samples of a dataset to better recognize the human daily living activities. The proposed method e ciently pre-processes the data captures and utilizes the k-Nearest Neighbors (KNN) imputation technique to extrapolate the missing samples in dataset captures. The proposed methodology elegantly extrapolated a similar pattern of activities as they were in the real dataset.
The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.
Network traffic generation is one of the primary techniques that is used to design and analyze the performance of network security systems. However, due to the diversity of IoT networks in terms of devices, applications and protocols, the traditional network traffic generator tools are unable to generate the IoT specific protocols traffic. Hence, the traditional traffic generator tools cannot be used for designing and testing the performance of IoT-specific security solutions. In order to design an IoT-based traffic generation framework, two main challenges include IoT device modelling and generating the IoT normal and attack traffic simultaneously. Therefore, in this work, we propose an open-source framework for IoT traffic generation which supports the two widely used IoT application layer protocols, i.e., MQTT and CoAP. The proposed framework allows a user to create an IoT use case, add customized IoT devices into it and generate normal and malicious IoT traffic over a real-time network. Furthermore, we set up a real-time IoT smart home use case to manifest the applicability of the proposed framework for developing the security solutions for IoT smart home by emulating the real world IoT devices. The experimental results demonstrate that the proposed framework can be effectively used to develop better security solutions for IoT networks without physically deploying the real-time use case.
The network attacks are increasing both in frequency and intensity with the rapid growth of internet of things (IoT) devices. Recently, denial of service (DoS) and distributed denial of service (DDoS) attacks are reported as the most frequent attacks in IoT networks. The traditional security solutions like firewalls, intrusion detection systems, etc., are unable to detect the complex DoS and DDoS attacks since most of them filter the normal and attack traffic based upon the static predefined rules. However, these solutions can become reliable and effective when integrated with artificial intelligence (AI) based techniques. During the last few years, deep learning models especially convolutional neural networks achieved high significance due to their outstanding performance in the image processing field. The potential of these convolutional neural network (CNN) models can be used to efficiently detect the complex DoS and DDoS by converting the network traffic dataset into images. Therefore, in this work, we proposed a methodology to convert the network traffic data into image form and trained a state-of-the-art CNN model, i.e., ResNet over the converted data. The proposed methodology accomplished 99.99\% accuracy for detecting the DoS and DDoS in case of binary classification. Furthermore, the proposed methodology achieved 87\% average precision for recognizing eleven types of DoS and DDoS attack patterns which is 9\% higher as compared to the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.