We evaluated the moderating effects of firm size and leverage on the working capital finance (WCF)-profitability relationship among Chinese companies during 2000-2017. Applying the generalized method of moments (GMM) technique on panel data, we observed that firm size and leverage have strong moderating roles in the WCF-profitability relationship. We observed that small or low-leverage firms have an inverted U-shaped WCF-profitability relationship. However, this relationship is U-shaped for large or high-leverage firms. We report break-even points in these relationships that show the portion of short-term debt in working capital financing. The results reveal that the break-even point for all subgroups (small, large, low-leverage, and high-leverage firms) decreases compared to the break-even point of the full sample. This study shows how the break-even point of the WCF-profitability relationship shifts when a company expands or its leverage level changes. Managers can use this information for profit maximization.
Existing studies disagree over the core predictors of firm-level financial choices in developing countries. The general practice only validates the traditional capital structure model, which leads to inconsistency and a lack of novelty. This study removed overfitting issues among existing factors and presented the most reliable and advanced capital structure model in Pakistani firms. The panel data include 368 Pakistani companies from 19 non-financial sectors over the period 2004 to 2017. We apply Akaike and Bayesian Information Criteria to remove overfitting issues among inconsistent proxies in the capital structure model. The fixed effects regression is used for basic results and the Generalized Method of Moments is applied to control the endogeneity. Besides the conventional proxies, we report that credit rating, distance from bankruptcy, managerial concentration, and institutional quality are the most advanced capital structure determinants in Pakistan. These predictors remain significant across firm size and growth levels. Also, the findings confirm that new predictors are reliable to define capital structure dynamics and improve the speed of adjustment in overall and sub-sample analysis. The major findings suggest that managers and policymakers should consider these advanced predictors to design their financial settings in firms.
This study examines the moderating role of the cash conversion cycle (CCC) while investigating the effects of working capital finance (WCF) on firm performance. Using more than 18000 observations from Chinese manufacturing firms, we computed several proxies for each variable of the study and merged these proxies via Principal Component Analysis (PCA) to create one master proxy for each variable. These master proxies contain all the essential information of individual proxies. Hence, they are more useful in producing reliable results than individual proxies. We also compared the predicting power of 15 econometric and machine learning estimators to select the best estimator. Based on the highest [Formula: see text] value, we used two machine learning estimators, K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN) for subsequent analysis. To strengthen the empirical analysis, we employed another machine learning technique, i.e., the Bagging method, which is an ensembling technique that uses multiple estimators simultaneously to improve the accuracy and generalization of results. We used the Bagging method with 50[Formula: see text]KNN estimators. The findings unfold that the sensitivity level of firm performance to short-term debts shifts when the CCC period of firms fluctuates. More precisely, the WCF–performance relationship in firms with extended CCC is more sensitive compared with this relationship in the full sample. On segregating the three elements of CCC, we observe that the WCF–performance relationship in firms carrying extended account receivable (AR) days or extended Inventory days is more sensitive than the full sample. These findings are useful for firms’ management for revising the optimal level of short-term debts according to CCC fluctuation. Also, the lending agencies can use these results for the assessment of firms’ risk levels and adjustment of the interest rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.