Abstract. This study contributes to formalize a three phase customer churn prediction technique. In the first phase, a supervised feature selection procedure is adopted to select the most relevant subset of features by laying-off the redundancy and increasing the relevance that leads to reduced and highly correlated features set. In the second phase, a knowledge based system (KBS) is built through Ripple Down Rule (RDR) learner which acquires knowledge about seen customer churn behavior and handles the problem of brittle in churn KBS through prudence analysis that will issue a prompt to the decision maker whenever a case is beyond the maintained knowledge in the knowledge database. In the final phase, a technique for Simulated Expert (SE) is proposed to evaluate the Knowledge Acquisition (KA) in KB system. Moreover, by applying the proposed approach on publicly available dataset, the results show that the proposed approach can be a worthy alternate for churn prediction in telecommunication industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.