Visualizations such as bar charts help users reason about data, but are mostly screen-based, rarely physical, and almost never physical and dynamic. This paper investigates the role of physically dynamic bar charts and evaluates new interactions for exploring and working with datasets rendered in dynamic physical form. To facilitate our exploration we constructed a 10×10 interactive bar chart and designed interactions that supported fundamental visualisation tasks, specifically: annotation, navigation, filtering, comparison, organization, and sorting. The interactions were evaluated in a user study with 17 participants. We identify the preferred methods of working with the data for each task (e.g. directly tapping rows to hide bars), highlight the strengths and limitations of working with physical data, and discuss the challenges of integrating the proposed interactions together into a larger data exploration system. In general, physical interactions were intuitive, informative, and enjoyable, paving the way for new explorations in physical data visualizations.
Physical data representations, or data physicalizations, are a promising new medium to represent and communicate data. Previous work mostly studied passive physicalizations which require humans to perform all interactions manually. Dynamic shape-changing displays address this limitation and facilitate data exploration tasks such as sorting, navigating in data sets which exceed the fixed size of a given physical display, or preparing "views" to communicate insights about data. However, it is currently unclear how people approach and interact with such data representations. We ran an exploratory study to investigate how non-experts made use of a dynamic physical bar chart for an open-ended data exploration and presentation task. We asked 16 participants to explore a data set on European values and to prepare a short presentation of their insights using a physical display. We analyze: (1) users' body movements to understand how they approach and react to the physicalization, (2) their hand-gestures to understand how they interact with physical data, (3) system interactions to understand which subsets of the data they explored and which features they used in the process, and (4) strategies used to explore the data and present observations. We discuss the implications of our findings for the use of dynamic data physicalizations and avenues for future work.
This paper presents ShapeClip: a modular tool capable of transforming any computer screen into a z-actuating shape-changing display. This enables designers to produce dynamic physical forms by 'clipping' actuators onto screens. ShapeClip displays are portable, scalable, fault-tolerant, and support runtime re-arrangement. Users are not required to have knowledge of electronics or programming, and can develop motion designs with presentation software, image editors, or web-technologies. To evaluate ShapeClip we carried out a full-day workshop with expert designers. Participants were asked to generate shape-changing designs and then construct them using ShapeClip. ShapeClip enabled participants to rapidly and successfully transform their ideas into functional systems.
Shape-changing displays -visual output surfaces with physically-reconfigurable geometry -provide new challenges for content generation. Content design must incorporate visual elements, physical surface shape, react to user input, and adapt these parameters over time. The addition of the 'shape channel' significantly increases the complexity of content design, but provides a powerful platform for novel physical design, animations, and physicalizations. In this work we use ShapeCanvas, a 4×4 grid of large actuated pixels, combined with simple interactions, to explore novice user behavior and interactions for shape-change content design. We deployed ShapeCanvas in a café for two and a half days and observed users generate 21 physical animations. These were categorized into seven categories and eight directly derived from people's personal interest. This paper describes these experiences, the generated animations and provides initial insights into shapechanging content design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.