A BWR-based SMR called the Novel Modular Reactor (NMR-50) is being developed at Purdue University. NMR takes the advantages of the two-phase flow driving head, which allows a much smaller and simpler reactor pressure vessel (RPV) compared to the integral PWRs. In this study, through a systematic step-wise optimization approach including a simulated annealing based optimization method, an optimum core design that meets a 10-year cycle length with a minimum fuel cost while satisfying safety related criteria was derived and analyzed. The lattice code CASMO-4, the whole core analysis code PARCS and the thermal-hydraulics code RELAP5 were used to perform calculations from pin cell up to whole core depletion calculations. The NMR-50 optimized core design is able to achieve a 10.2 year cycle length with an average fuel enrichment of 4.61 wt% of 235 U in a 1010 lattice fuel assembly. The minimum critical power ratio (MCPR) and the maximum fuel linear power density (MFLPD) during the cycle are 1.99 and 18.25 kW/m, respectively, providing large margins to thermal design constraints. The NMR-50 control system design is able to provide a sufficient cold shutdown margin of 1.7 %. With its small reactor core size, large negative void coefficient, and low operating thermal neutron flux, an enhanced xenon stability characteristic is possible. Peak fast neutron fluence of 21 2 8.8 10 n cm was below the industry standard limit, which from extensive plant data records, should not be a major concern to channel distortions from a radiation damage point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.