Solid state nuclear magnetic resonance (NMR) enables atomic-resolution characterization of the molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases the NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature of <6 K. In addition to cryogenic MAS results at <6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.
Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude by transferring spin polarization from electron paramagnetic resonance (EPR) to NMR. However, paramagnetic DNP polarizing agents can have deleterious effects on NMR signals. Electron spin decoupling can mitigate these paramagnetic relaxation effects. We demonstrate electron decoupling experiments in conjunction with DNP and magic-angle-spinning NMR spectroscopy. Following a DNP and spin diffusion period, the microwave irradiation frequency is quickly tuned on-resonance with electrons on the DNP polarizing agent. The electron decoupling performance shows a strong dependence on the microwave frequency and DNP polarization time. Microwave frequency sweeps through the EPR line shape are shown as a time domain strategy to significantly improve electron decoupling. For C spins on biomolecules frozen in a glassy matrix, electron decoupling reduces the line widths by 11% (47 Hz) and increases the intensity by 14%.
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.