The characterization of carbon stocks and dynamics at the national level is critical for countries engaging in climate change mitigation and adaptation strategies. However, several tropical countries, including Kenya, lack the essential information typically provided by a complete national forest inventory. Here we present the most detailed and rigorous national-scale assessment of aboveground woody biomass carbon stocks and dynamics for Kenya to date. A non-parametric random forest algorithm was trained to retrieve aboveground woody biomass carbon (AGBC) for the year 2014 ± 1 and forest disturbances for the 2014–2017 period using in situ forest inventory plot data and satellite Earth Observation (EO) data. The ecosystem carbon cycling of Kenya’s forests and wooded grassland were assessed using a model-data fusion framework, CARDAMOM, constrained by the woody biomass datasets from this study as well as time series information on leaf area, fire events and soil organic carbon. Our EO-derived AGBC stocks were estimated as 140 Mt C for forests and 199 Mt C for wooded grasslands. The total AGBC loss during the study period was estimated as 1.89 Mt C with a dispersion below 1%. The CARDAMOM analysis estimated woody productivity to be three times larger in forests (mean = 1.9 t C ha−1 yr−1) than wooded grasslands (0.6 t C ha−1 yr−1), and the mean residence time of woody C in forests (16 years) to be greater than in wooded grasslands (10 years). This study stresses the importance of carbon sequestration by forests in the international climate mitigation efforts under the Paris Agreement, but emphasizes the need to include non-forest ecosystems such as wooded grasslands in international greenhouse gas accounting frameworks.
Tactical decisions on natural resource management require accurate and up to date spatial information for sustainable forest management. Remote sensing devices by the use of multispectral data obtained from satellites or airborne sensors, allow substantial data acquisition that reduce cost of data collection and satisfy demands for continuous precise data. Forest height and Diameter at Breast Height (DBH) are crucial variables to predict volume and biomass. Traditional methods for estimation of tree heights and biomass are time consuming and labour intensive making it difficult for countries to carry out periodic National forest inventories to support forest management and REDD+ activities. This study assessed the applicability of LiDAR data in estimating tree height and biomass in a variety of forest conditions in Londiani Forest Block. The target forests were natural forest, plantation forests and other scattered forests analysed in a variety of topographic conditions. LiDAR data were collected by an aircraft flying at an elevation of 1550 m. The LIDAR pulses hitting the forest were used to estimate the forest height and the density of the vegetation, which implied biomass. LiDAR data were collected in 78 sampling plots of 15 m radius. The LiDAR data were ground truthed to compare its accuracy for above ground biomass (AGB) and height estimation. The correlation coefficients for heights between LiDAR and field data were 0.92 for the pooled data, 0.79 in natural forest, 0.95 in plantation forest and 0.92 in other scattered forest. AGB estimated from LiDAR and ground truthed data had a correlation coefficient of 0.86 for the pooled data, 0.78 in natural forest, 0.84 in plantation forest and 0.51 in other scattered forests. This implied 62%, 84% 256and 89% accuracy of AGB estimation in natural forests, other scattered forests and plantation forests respectively. The even aged conditions of plantation forests might have resulted to better estimates of height and AGB as compared to uneven aged natural forests and scattered forests. The results imply the reliability of using Airborne LIDAR scanning in forest biomass estimates in Kenya and are an option for supporting a National Forest Monitoring System for REDD+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.