Background Meta-analyses aggregate results of different clinical studies to assess the effectiveness of a treatment. Despite their importance, meta-analyses are time-consuming and labor-intensive as they involve reading hundreds of research articles and extracting data. The number of research articles is increasing rapidly and most meta-analyses are outdated shortly after publication as new evidence has not been included. Automatic extraction of data from research articles can expedite the meta-analysis process and allow for automatic updates when new results become available. In this study, we propose a system for automatically extracting data from research abstracts and performing statistical analysis. Materials and methods Our corpus consists of 1011 PubMed abstracts of breast cancer randomized controlled trials annotated with the core elements of clinical trials: Participants, Intervention, Control, and Outcomes (PICO). We proposed a BERT-based named entity recognition (NER) model to identify PICO information from research abstracts. After extracting the PICO information, we parse numeric outcomes to identify the number of patients having certain outcomes for statistical analysis. Results The NER model extracted PICO elements with relatively high accuracy, achieving F1-scores greater than 0.80 in most entities. We assessed the performance of the proposed system by reproducing the results of an existing meta-analysis. The data extraction step achieved high accuracy, however the statistical analysis step achieved low performance because abstracts sometimes lack all the required information. Conclusion We proposed a system for automatically extracting data from research abstracts and performing statistical analysis. We evaluated the performance of the system by reproducing an existing meta-analysis and the system achieved a relatively good performance, though more substantiation is required.
Data in many fields such as e-commerce, social networks, and web data can be modeled as bipartite graphs, where a node represents a person and/or an object and a link represents the relationship between people and/or objects. Since the relationships change with time, data mining techniques for time series graphs have been actively studied. In this paper, we study the problem of predicting links in the future graph from historical graphs. Although various studies have been carried out on link prediction, the prediction accuracy of existing methods is still low because it is difficult to capture continuous change with time. Therefore, we propose a new method that combines non-negative matrix factorization (NMF) and a time series data forecasting method. NMF extracts the latent features while the forecasting method captures and predicts the changes of the features with time. Our method can predict hidden links that do not appear in historical graphs. Our experiments with real datasets show that our method has a higher prediction accuracy compared to existing methods.
Background Semantic textual similarity (STS) captures the degree of semantic similarity between texts. It plays an important role in many natural language processing applications such as text summarization, question answering, machine translation, information retrieval, dialog systems, plagiarism detection, and query ranking. STS has been widely studied in the general English domain. However, there exists few resources for STS tasks in the clinical domain and in languages other than English, such as Japanese. Objective The objective of this study is to capture semantic similarity between Japanese clinical texts (Japanese clinical STS) by creating a Japanese dataset that is publicly available. Materials We created two datasets for Japanese clinical STS: (1) Japanese case reports (CR dataset) and (2) Japanese electronic medical records (EMR dataset). The CR dataset was created from publicly available case reports extracted from the CiNii database. The EMR dataset was created from Japanese electronic medical records. Methods We used an approach based on bidirectional encoder representations from transformers (BERT) to capture the semantic similarity between the clinical domain texts. BERT is a popular approach for transfer learning and has been proven to be effective in achieving high accuracy for small datasets. We implemented two Japanese pretrained BERT models: a general Japanese BERT and a clinical Japanese BERT. The general Japanese BERT is pretrained on Japanese Wikipedia texts while the clinical Japanese BERT is pretrained on Japanese clinical texts. Results The BERT models performed well in capturing semantic similarity in our datasets. The general Japanese BERT outperformed the clinical Japanese BERT and achieved a high correlation with human score (0.904 in the CR dataset and 0.875 in the EMR dataset). It was unexpected that the general Japanese BERT outperformed the clinical Japanese BERT on clinical domain dataset. This could be due to the fact that the general Japanese BERT is pretrained on a wide range of texts compared with the clinical Japanese BERT.
No abstract
Meta-analyses examine the results of different clinical studies to determine whether a treatment is effective or not. Meta-analyses provide the gold standard for medical evidence. Despite their importance, meta-analyses are time-consuming and this poses a challenge where timeliness is important. Research articles are also increasing rapidly and most meta-analyses become outdated after publication since they have not incorporated new evidence. Therefore, there is increasing interest to automate meta-analysis so as to speed up the process and allow for automatic update when new results are available. In this preliminary study we present AUTOMETA, our proposed system for automating meta-analysis which employs existing natural language processing methods for identifying Participants, Intervention, Control, and Outcome (PICO) elements. We show that our system can perform advanced meta-analyses by parsing numeric outcomes to identify the number of patients having certain outcomes. We also present a new dataset which improves previous datasets by incorporating additional tags to identify detailed information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.