Accumulation of glycogen in the kidney and liver is the main feature of Fanconi–Bickel Syndrome (FBS), a rare disorder of carbohydrate metabolism inherited in an autosomal recessive manner due to SLC2A2 gene mutations. Missense, nonsense, frame-shift (fs), in-frame indels, splice site, and compound heterozygous variants have all been identified in SLC2A2 gene of FBS cases. Approximately 144 FBS cases with 70 different SLC2A2 gene variants have been reported so far. SLC2A2 encodes for glucose transporter 2 (GLUT2) a low affinity facilitative transporter of glucose mainly expressed in tissues playing important roles in glucose homeostasis, such as renal tubular cells, enterocytes, pancreatic β-cells, hepatocytes and discrete regions of the brain. Dysfunctional mutations and decreased GLUT2 expression leads to dysglycaemia (fasting hypoglycemia, postprandial hyperglycemia, glucose intolerance, and rarely diabetes mellitus), hepatomegaly, galactose intolerance, rickets, and poor growth. The molecular mechanisms of dysglycaemia in FBS are still not clearly understood. In this review, we discuss the physiological roles of GLUT2 and the pathophysiology of mutants, highlight all of the previously reported SLC2A2 mutations associated with dysglycaemia, and review the potential molecular mechanisms leading to dysglycaemia and diabetes mellitus in FBS patients.
The solute carrier family 16 member 1 ( SLC16A1 ) gene encodes for monocarboxylate transporter 1 (MCT1) that mediates the movement of monocarboxylates, such as lactate and pyruvate across cell membranes. Inactivating recessive homozygous or heterozygous mutations in the SLC16A1 gene were described in patients with recurrent ketoacidosis and hypoglycemia, a potentially lethal condition. In the brain where MCT1 is highly localized around axons and oligodendrocytes, glucose is the most crucial energy substrate while lactate is an alternative substrate. MCT1 mutation or reduced expression leads to neuronal loss due to axonal degeneration in an animal model. Herein, we describe a 28 months old female patient who presented with the first hypoglycemic attack associated with ketoacidosis starting at the age of 3 days old. Whole exome sequencing (WES) performed at 6 months of age revealed a c.218delG mutation in exon 3 in the SLC16A1 gene. The variant is expected to result in loss of normal MCT1 function. Our patient is amongst the youngest presenting with MCT1 deficiency. A detailed neuroimaging assessment performed at 18 months of age revealed a complex white and gray matter disease, with heterotopia. The threshold of blood glucose to circumvent neurological sequelae cannot be set because it is patient-specific, nevertheless, neurodevelopmental follow up is recommended in this patient. Further functional studies will be required to understand the role of the MCT1 in key tissues such as the central nervous system (CNS), liver, muscle and ketone body metabolism. Our case suggests possible neurological sequelae that could be associated with MCT1 deficiency, an observation that could facilitate the initiation of appropriate neurodevelopmental follow up in such patients.
Background There are few reports describing the proximal deletions of the short arm of chromosome 20, making it difficult to predict the likely consequences of these deletions. Most previously reported cases have described the association of 20p11.2 deletions with Alagille syndrome, while there are others that include phenotypes such as panhypopituitarism, craniofacial dysmorphism, polysplenia, autism, and Hirschsprung disease. Methods Molecular karyotyping, cytogenetics, and DNA sequencing were undertaken in a child to study the genetic basis of a complex phenotype consisting of craniofacial dysmorphism, ocular abnormalities, ectopic inguinal testes, polysplenia, growth hormone deficiency, central hypothyroidism, and gastrointestinal system anomalies. Results We report the smallest described de novo proximal 20p11.2 deletion, which deletes only the FOXA2 leading to the above complex phenotype. Conclusions Haploinsufficiency of the FOXA2 only gene is associated with a multisystem disorder.
Introduction: Most of the sudies focuses on the surgical advantages and disadvantages of the posterior and direct lateral approaches to THA, in addition to identifying the effects of these surgical approaches on global function describing post-operative gait and activities of daily living (ADLs), local function describing muscle strength around the hip and iatrogenic damage of soft tissue around hip Aims and Objectives: To compare functional outcome following primary total hip arthroplasty among geriatric patients between two surgical approaches - direct lateral and posterior approaches. Material And Methods: Descriptive follow up study with comparison between two groups of patients operated by direct lateral and posterior approach of THA to be conducted in DEPARTMENT OF ORTHOPAEDICS, JAGANNATH GUPTA INSTITUTE OF MEDICAL SCIENCES AND HOSPITAL, KOLKATA from 18 months. 54 patients were included in this study. Result: In Direct lateral Group, 9(33.3%) patients had AVN of femoral head, 13(48.1%) patients had displaced neck of femur fracture and 5(18.5%) patients had osteoarthritis of hip joint. In Posterior Group, 7(25.9%) patients had AVN of femoral head, 7(25.9%) patients had displaced neck of femur fracture and 13(48.1%) patients had osteoarthritis of hip joint. Association of Indication of operation vs group was not statistically signicant (p=0.0606). Conclusion: Month of follow-up was higher in Posterior approach compared to direct lateral approach which was statistically signicant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.