The existence theory for the vector valued stochastic differential equations under G-Brownian motion (G-SDEs) of the type, with first two discontinuous coefficients is established. It is shown that the G-SDEs have more than one solution if the coefficient g or the coefficients f and g simultaneously, are discontinuous functions. The upper and lower solutions method is used and examples are given to explain the theory and its importance.
In this note, the Carathéodory approximation scheme for vector valued stochastic differential equations under G-Brownian motion (G-SDEs) is introduced. It is shown that the Carathéodory approximate solutions converge to the unique solution of the G-SDEs. The existence and uniqueness theorem for G-SDEs is established by using the stated method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.