In this paper, we consider the performance evaluation of two retrial queueing system. Customers arrive to the system, if upon arrival, the queue is full, the new arriving customers either move into one of the orbits, from which they make a new attempts to reach the primary queue, until they find the server idle or balk and leave the system, these later, and after getting a service may comeback to the system requiring another service. So, we derive for this system, the joint distribution of the server state and retrial queue lengths. Then, we give some numerical results that clarify the relationship between the retrials, arrivals, balking rates, and the retrial queue length.
In this paper, we investigate an approximate analysis of unreliable M/M/c retrial queue with c ≥ 3 in which all servers are subject to breakdowns and repairs. Arriving customers that are unable to access a server due to congestion or failure can choose to enter a retrial orbit for an exponentially distributed amount of time and persistently attempt to gain access to a server, or abandon their request and depart the system. Once a customer is admitted to a service station, he remains there for a random duration until service is complete and then depart the system. However, if the server fails during service, i.e., an active breakdown, the customer may choose to abandon the system or proceed directly to the retrial orbit while the server begins repair immediately. In the unreliable model, there are no exact solutions when the number of servers exceeds one. Therefore, we seek to approximate the steady-state joint distribution of the number of customers in orbit and the status of the c servers for the case of Markovian arrival and service times. Our approach to deriving the approximate steady-state probabilities employs a phase-merging algorithm.
The stability properties of the bandwidth allocation algorithm First Fit are analyzed for the distributions concentrated on three sizes for the requests and the bin equal to 5. To analyze these processes we introduce the notion of a smooth initial state. Starting from a smooth initial state the fluid limits of these systems are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.