In this paper we investigate a new design of high sensitivity photonic crystal temperature sensor (PCTS). A square lattice of silicon (Si) rods immersed in air matrix is used as a basic structure. The designed sensor consists of two inline quasi-waveguides which are coupled to a resonant cavity (RC). The sensing principle is based on Si refractive index change caused by the variation of the temperatures over a range from 0 to 80 • C. This variation leads to an important shift in the resonance wavelength. The performance of the suggested temperature sensor has been analyzed and studied using finite-difference time domain (FDTD) method. The results show that our designed structure offers a high sensibility of 93, 61 pm/ • C and quality factor of 2506.5. Its structure is very compact with total size 115.422 µm 2 , which is suitable for nanotechnology based sensing applications.
This paper reports the investigation of a one-dimensional (1D) photonic crystal (PhC) sensor with improved performance for detecting different categories of cancer cells. The sensing region consists of a vertical slot (VS) introduced inside the periodic Bragg mirror. The structure operating principle is based on the change of the refractive index (RI) of the analyte incorporated in the VS, which leads to the shift in the resonant wavelength peak. The sensing properties have been numerically simulated and analyzed using the transfer matrix method (TMM). The study shows that the optimization process of the structure tends to enhance sensitivity. From the result of the numerical simulation, it is found that the final optimized sensor exhibits the higher sensitivity of 3201 nm/RIU than other similar devices. We believe that the obtained results will be valuable for designing highly sensitive PhC sensors.
In this paper a T-branch optical diplexer in two dimensional (2D) photonic crystal (PhC) to select two telecommunication wavelengths 1493.6nm and1553nm is investigated. In our design directional couplers (DC) and resonant cavity (RC) are utilized. A square lattice of silicon (Si) rods in air is used as fundamental structure. The coupling regions consist of three entire rows of decreased Si rods. Plane wave expansion method (PWE) and finite difference time domain (FDTD) method are utilized to analyze and simulate the characteristics of the designed device. The average transmission efficiency of our proposed diplexer is about 99.75%. High quality factor and extremely small crosstalk were achieved. The total size of the suggested design is 272.214 μm2, which is very suitable for nanotechnology based demultiplexing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.