Conventional ontology matching systems are not well-tailored to ensure sufficient quality alignments for large ontology matching tasks. In this paper, we propose a local matching learning strategy to align large and complex biomedical ontologies. We define a novel partitioning approach that breakups large ontology alignment task into a set of local sub-matching tasks. We perform a machine learning approach for each local sub-matching task. We build a local machine learning model for each sub-matching task without any user involvement. Each local matching learning model automatically provides adequate matching settings for each local sub-matching task. Our results show that : (i) partitioning approach outperforms existing techniques, (ii) local matching while using a specific machine learning model for each sub-matching task yields to promising results and (iii) the combination between partitioning and machine learning increases the overall result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.