This paper describes a brief overview of main issues related to atmospheric ice accretion on wind turbines installed in cold climate region. Icing has significant effects on wind turbine performance particularly from aerodynamic and structural integrity perspective, as ice accumulates mainly on the leading edge of the blades that change its aerodynamic profile shape and effects its structural dynamics due to added mass effects of ice. This research aims to provide an overview and develop further understanding of the effects of atmospheric ice accretion on wind turbine blades. One of the operational challenges of the wind turbine blade operation in icing condition is also to overcome the process of ice shedding, which may happen due to vibrations or bending of the blades. Ice shedding is dangerous phenomenon, hazardous for equipment and personnel in the immediate area.
Sulphate attack is one of the key issues in geotechnical engineering. This study aims to investigate the efficacy of the seashell to reduce negative impacts of the magnesium sulphate concentration on the cement-stabilized clay mixtures by performing a series of unconfined compressive strength (UCS) tests. Three percent of cement (3, 5 and 7%) was utilized in this study. In addition, the benchmark and exposed specimens were cured for 7, 14, and 28 days before testing and exposure, respectively. A series of the compaction tests were conducted and the optimum moisture content (OMC) and maximum dry density (MDD) values were achieved. In the next stage, the UCS tests were performed on the specimens containing 10, 20, or 30% seashell contents and the specimens were exposed to sulphate concentration. Scanning electron microscope morphology had indicated that seashells are a suitable replacement for cement. Qualitative X-ray diffraction had shown that the presence of magnesium sulphate reduces the formation of calcium silicate hydrate, which causes durability issues in cement-stabilized soils. The results indicated that seashell is effective to improve the sulphate resistance of cement-stabilized soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.