Convolutional Neural Networks (CNNs) have been recently introduced in the domain of session-based next item recommendation. An ordered collection of past items the user has interacted with in a session (or sequence) are embedded into a 2-dimensional latent matrix, and treated as an image. The convolution and pooling operations are then applied to the mapped item embeddings. In this paper, we first examine the typical session-based CNN recommender and show that both the generative model and network architecture are suboptimal when modeling long-range dependencies in the item sequence. To address the issues, we introduce a simple, but very effective generative model that is capable of learning high-level representation from both short-and long-range item dependencies. The network architecture of the proposed model is formed of a stack of holed convolutional layers, which can efficiently increase the receptive fields without relying on the pooling operation. Another contribution is the effective use of residual block structure in recommender systems, which can ease the optimization for much deeper networks. The proposed generative model attains state-of-the-art accuracy with less training time in the next item recommendation task. It accordingly can be used as a powerful recommendation baseline to beat in future, especially when there are long sequences of user feedback. ACM Reference Format:
With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.
Abstract-Recommending users with preferred point-ofinterests (POIs) has become an important task for locationbased social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task.
Long session-based recommender systems have attacted much attention recently. For each user, they may create hundreds of click behaviors in short time. To learn long session item dependencies, previous sequential recommendation models resort either to data augmentation or a left-to-right autoregressive training approach. While effective, an obvious drawback is that future user behaviors are always mising during training. In this paper, we claim that users' future action signals can be exploited to boost the recommendation quality. To model both past and future contexts, we investigate three ways of augmentation techniques from both data and model perspectives. Moreover, we carefully design two general neural network architectures: a pretrained two-way neural network model and a deep contextualized model trained on a text gap-filling task. Experiments on four real-word datasets show that our proposed two-way neural network models can achieve competitive or even much better results. Empirical evidence confirms that modeling both past and future context is a promising way to offer better recommendation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.