Rescheduling is a necessary procedure for a flexible job shop when newly arrived priority jobs must be inserted into an existing schedule. Instability measures the amount of change made to the existing schedule and is an important metrics to evaluate the quality of rescheduling solutions. This paper focuses on a flexible job-shop rescheduling problem (FJRP) for new job insertion. First, it formulates FJRP for new job insertion arising from pump remanufacturing. This paper deals with bi-objective FJRPs to minimize: 1) instability and 2) one of the following indices: a) makespan; b) total flow time; c) machine workload; and d) total machine workload. Next, it discretizes a novel and simple metaheuristic, named Jaya, resulting in DJaya and improves it to solve FJRP. Two simple heuristics are employed to initialize high-quality solutions. Finally, it proposes five objective-oriented local search operators and four ensembles of them to improve the performance of DJaya. Finally, it performs experiments on seven real-life cases with different scales from pump remanufacturing and compares DJaya with some state-of-the-art algorithms. The results show that DJaya is effective and efficient for solving the concerned FJRPs.
A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time. Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.