Three types (type-A, B, and C) of composite polymeric membranes (CPMs) based on poly vinyl chloride (PVC) and different fillers (sodium polyacrylate and sodium polyacrylate-graphite) soaked in water and 0.5 N HCl were prepared using solvent casting method. Different physicochemical parameters such as microscopic surface study, water uptake, perpendicular swelling, density, porosity (ε), ion exchange capacity, and conductivity of the as the prepared CPMs were evaluated. Interestingly, type-A CPM cast with filler-A has greater values of the above parameters except density and ionic conductivity than those of type-B and C CPMs. The water uptake of type-A, B and C composite membranes was respectively in the range of 220.42–534.70, 59.64–41.65, and 15.94–2.62%. Ion exchange capacity of type-A, B and C CPMs was in the range of 3.669 × 107–2.156 × 107, 5.948 × 107–1.258 × 107, and 1.454 × 107–1.201 × 107 m.eq.g−1 respectively while the conductivity order was type-A < B < C. These types of CPMs may be helpful in many applications including proton exchange membranes, fuel cell like devices, as sensors for different metals, gas purification, water treatment, and battery separators.
Hydrogen is considered as one of the attractive environmentally friendly materials with zero carbon emission. Hydrogen storage is still challenging for its use in various energy applications. That’s why hydrogen gained more and more attention to become a major fuel of today’s energy consumption. Therefore, nowadays, hydrogen storage materials are under extensive research. Herein, efforts are being devoted to design efficient systems which could be used for future hydrogen storage purposes. To this end, we have employed density functional theory (DFT) to optimize the geometries of the designed inorganic Al[Formula: see text]N[Formula: see text] nanoclusters with transition metals (Fe, Co, Ni, Cu and Zn). Various positions of metal encapsulated Al[Formula: see text]N[Formula: see text] are examined for efficient hydrogen adsorption. After adsorption of H2 on late transition metals encapsulated Al[Formula: see text]N[Formula: see text] nanocluster, different geometric parameters like frontier molecular orbitals, adsorption energies and nature bonding orbitals have been performed for exploring the potential of metal encapsulated for hydrogen adsorption. Moreover, molecular electrostatic potential (MEP) analysis was also performed in order to explore the different charge separation upon H2 adsorption on metals encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. Also, global indices of reactivity like ionization potential, electron affinity, electrophilic index, chemical softness and chemical hardness were also examined by using DFT. The adsorption energy results suggested encapsulation of late transition metals in Al[Formula: see text]N[Formula: see text] nanocage efficiently enhancing the adsorption capability of Al[Formula: see text]N[Formula: see text] for hydrogen adsorption. Results of all analysis suggested that our designed systems are efficient candidates for hydrogen adsorption. Thus, we recommended a novel kind of systems for hydrogen storage materials.
Two series, A and B, of PVC based nanocomposite polymer membranes (nCPMs) were prepared using PbO only and PbO/graphite mixture as a filler by solution casting method. Seven samples with varying compositions (5–35%) of filler particles were prepared for each series and were compared by thickness measurements, porosity, water uptake, swelling degree, ionic conductivity, ion exchange capacity (IEC), membrane potential and transport number. The maximum values for these characteristics were observed as 0.402 mm, 0.77, 141.3%, 0.11, 0.0033 Scm−1, 8.6 milli-eq.g−1, 0.19 V and 0.01391 for series-A composites whereas that of 0.367 mm, 0.83, 63.4%, 0.019, 0.00981 Scm−1, 5.21 milli-eq.g−1, 0.13 V and 0.0108 for series-B nCPMs respectively. The SEM images of membranes showed greater voids produced in the series-B compared to series-A composites. The maximum Ionic conductivity, IEC, membrane potential and transport number were observed for membrane with 25% PbO/graphite, 20% PbO and 35% PbO particles respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.