Modeling epidemic dynamics plays an important role in studying how diseases spread, predicting their future course, and designing strategies to control them. In this letter, we introduce a model of SIR (susceptible-infected-removed) type which explicitly incorporates the effect of cooperative coinfection. More precisely, each individual can get infected by two different diseases, and an individual already infected with one disease has an increased probability to get infected by the other. Depending on the amount of this increase, we prove different threshold scenarios. Apart from the standard continuous phase transition for single-disease outbreaks, we observe continuous transitions where both diseases must coexist, but also discontinuous transitions are observed, where a finite fraction of the population is already affected by both diseases at the threshold. All our results are obtained in a mean field model using rate equations, but we argue that they should hold also in more general frameworks.
We investigate the effects of cooperativity between contagion processes that spread and persist in a host population. We propose and analyze a dynamical model in which individuals that are affected by one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent B and vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible model used for modeling single contagion processes. We show that cooperativity changes the dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These properties are robust and are corroborated by stochastic simulations on lattices and generic network topologies. Finally, we investigate wave propagation and transients in a spatially extended version of the model and show that especially for intermediate values of baseline reproduction ratios the system is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous stationary states for some parameters and negative front speeds (receding wave fronts). The two agent model can be employed as a starting point for more complex contagion processes, involving several interacting agents, a model framework particularly suitable for modeling the spread and dynamics of microbiological ecosystems in host populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.