Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is one order of magnitude higher than the values of the reported 2D piezoelectrics. The selfpowered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.
As an emerging two-dimensional semiconductor, Bi 2 O 2 Se has recently attracted broad interests in optoelectronic devices for its superior mobility and ambient stability, whereas the diminished photoresponse near its inherent indirect bandgap (0.8 eV or λ = 1550 nm) severely restricted its application in the broad infrared spectra. Here, we report the Bi 2 O 2 Se nanosheets based hybrid photodetector for short wavelength infrared detection up to 2 μm via PbSe colloidal quantum dots (CQDs) sensitization. The type II interfacial band offset between PbSe and Bi 2 O 2 Se not only enhanced the device responsivity compared to bare Bi 2 O 2 Se but also sped up the response time to ∼4 ms, which was ∼300 times faster than PbSe CQDs. It was further demonstrated that the photocurrent in such a zero-dimensional−two-dimensional hybrid photodetector could be efficiently tailored from a photoconductive to photogate dominated response under external field effects, thereby rendering a sensitive infrared response >10 3 A/W at 2 μm. The excellent performance up to 2 μm highlights the potential of field-effect modulated Bi 2 O 2 Se-based hybrid photodetectors in pursuing highly sensitive and broadband photodetection.
Two-dimensional molecular crystals, consisting of zero-dimensional molecules, are very appealing due to their novel physical properties. However, they are mostly limited to organic molecules. The synthesis of inorganic version of two-dimensional molecular crystals is still a challenge due to the difficulties in controlling the crystal phase and growth plane. Here, we design a passivator-assisted vapor deposition method for the growth of two-dimensional Sb2O3 inorganic molecular crystals as thin as monolayer. The passivator can prevent the heterophase nucleation and suppress the growth of low-energy planes, and enable the molecule-by-molecule lateral growth along high-energy planes. Using Raman spectroscopy and in situ transmission electron microscopy, we show that the insulating α-phase of Sb2O3 flakes can be transformed into semiconducting β-phase under heat and electron-beam irradiation. Our findings can be extended to the controlled growth of other two-dimensional inorganic molecular crystals and open up opportunities for potential molecular electronic devices.
The piezo-phototronic effect has been promising as an effective means to improve the performance of two-dimensional (2D) semiconductor based optoelectronic devices. However, the current reported monolayer 2D semiconductors are not regarded as suitable for actual flexible piezotronic photodetectors due to their insufficient optical absorption and mechanical durability, although they possess strong piezoelectricity. In this work, we demonstrate that, unlike 2H-phase transition-metal dichalcogenides, γ-phase InSe with a hexagonal unit cell possesses broken inversion symmetry in all the layer numbers and has a strong second-harmonic generation effect. Moreover, driven by the piezo-phototronic effect, a flexible self-powered photodetector based on multilayer γ-InSe, which can work without any energy supply, is proposed. The device exhibited ultrahigh photon responsivity of 824 mA/W under light illuminations of 400 nm (0.368 mW/cm 2 ). Moreover, the responsivity and response speed of this photodetector were enhanced further by as much as 696% and 1010%, respectively, when a 0.62% uniaxial tensile strain was applied. Our devices exhibit high reliability and stability during a 6 month test time. These significant findings offer a promising pathway to construct high-performance flexible piezo-phototronic photodetectors based on multilayer 2D semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.