This study presents an evaluation of the physical and mechanical properties and characteristics of steel slag aggregate concrete in comparison with the typical crushed limestone stone aggregate concrete. Hardened concrete consist of more than 70% aggregate due to the high demand in building construction and the increase of the amount of disposed waste material, suppliers and researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional concrete mixes. Steel slag which is mainly consists of calcium carbonate is produced as a by-product during the oxidation process in steel industry. Steel slag was selected due to its characteristics, which are almost similar to conventional aggregates and the fact that it is easily obtainable as a by-product of the steel industry. As a result, utilization of steel slag will save natural resources and clean environment. Furthermore, results have shown that slag aggregate has better abrasion factor and impact value than conventional aggregate. Thorough investigation of the results have indicated that the amount of increase in compressive strength at age of 7 days are much more than that of age 28 days for all types of aggregate replacement. This indicates that the added slag could work as accelerator at early age while at 28 days age, the effect is reduced. The fine slag replacement scores the highest effect.
An experimental study was carried out on the effect of oxidation temperature and the oxide film composition on the compressibility of porous materials. Samples were annealed at different temperatures; the size change in the samples after annealing was measured. The phase composition of the oxide layer was investigated. Magnetite was generated at between 350 and 450°C, and two-phase oxide was formed at 550°C, after oxidation, weight gain was determined. The presence of pore overgrowth, which reduces porosity, was confirmed by metallographic tests. The maximum porosity is found in the oxidized samples produced by pressing at room temperature. The process of high-temperature oxidation of iron powder before pressing and in the state of free filling in a fluidized bed, as well as the effect of the content of oxides on magnetic characteristics, has been studied. The impact of oxidation on the compressibility of samples of iron powder was investigated. In this study, it was observed that the range of 350-450°C, offers the best compressibility and the necessary composition of the oxide film, which is also related to the presence of magnetite in the iron oxide coating. It is the ideal temperature for oxidation and repressing. The deformation of porous materials exposed to iron powder oxidation was tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.