A sulfated sintered ore catalyst (SSOC) was prepared to improve the denitration performance of the sintered ore catalyst (SOC). The catalysts were characterized by X-ray Fluorescence Spectrometry (XRF), Brunauer–Emmett–Teller (BET) analyzer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared spectroscopy (DRIFTS) to understand the NH3-selective catalytic reduction (SCR) reaction mechanism. Moreover, the denitration performance and stability of SSOC were also investigated. The experimental results indicated that there were more Brønsted acid sites at the surface of SSOC after the treatment by sulfuric acid, which lead to the enhancement of the adsorption capacity of NH3 and NO. Meanwhile, Lewis acid sites were also observed at the SSOC surface. The reaction between −NH2, NH 4 + and NO (E-R mechanism) and the reaction of the coordinated ammonia with the adsorbed NO2 (L-H mechanism) were attributed to NOx reduction. The maximum denitration efficiency over the SSOC, which was about 92%, occurred at 300 °C, with a 1.0 NH3/NO ratio, and 5000 h−1 gas hourly space velocity (GHSV).
Utilizing sintered ore catalysts (SOC), which are used in the sintering industry for NH3-SCR denitration, is a feasible and economical way to reduce NOx emission in sintering flue gas. Therefore, in order to enhance the denitration efficiency of SOC, sintered ore modified by sulfuric acid and sulfated sintered ore catalysts (SSOC-5) were prepared. Kinetic analyses of these two catalysts for denitration were carried out in this study. On the basis of eliminating the influence of internal and external diffusion, the relationship between reactants and reaction rate was studied by a power function kinetic model. This clarified that the adsorption ability of the acid-modified catalyst for reaction gas adsorption was stronger than that of sintered ore catalysts, and the reaction rate was also accelerated. The NO, NH3 and O2 reaction orders of SOC were 1, 0.3 and 0.16 at 250~300 °C, while these values of SSOC-5 were 0.8, 0.06 and 0.09, respectively. The apparent activation energy of SOC was 83.66 kJ/mol, while the value of SSOC-5 decreased to 59.93 kJ/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.