The stabilities of salt-finger and plume convection, two major flows characterizing the fluid dynamics of NH4Cl solutions cooling from below, are investigated by theoretical and experimental approaches. A linear stability analysis is implemented to study theoretically the onset of salt-finger convection. Special emphasis is placed on the competition between different instability modes. It is found that in most of the cases considered, the neutral curve consists of two separated monotonic branches with a Hopf bifurcation branch in between; the right-hand monotonic branch corresponding to the boundary-layer-mode convection is more unstable than the left-hand monotonic branch corresponding to the mushy-layer mode. We also conducted a series of experiments covering wide ranges of bulk fluid concentration C∞ and bottom temperature TB to study the stability characteristics of plume convection. From the measurement of both temperature and concentration of the interstitial fluid in the mushy layer, we verify that during the progress of solidification the melt in the mush is in a thermodynamic equilibrium state except at the melt/mush interface where most of the solidification occurs. The critical Rayleigh number of the onset of plume convection is found to be Rccm = 1.1 × 107Π* (see (22)), where Π* is the permeability of the mush. This relation is believed to be valid up to supereutectic NH4Cl solutions.
Directional solidification experiments have been carried out using the analogue casting system of NH4Cl-H2O solution by cooling it from below with a constant-temperature surface ranging from - 31.5°C to + 11.9 °C. The NH4Cl concentration was 26% in all solutions, with a liquidus temperature of 15 °C. It was found that finger convection occurred in the fluid region just above the mushy layer in all experiments. Plume convection with associated chimneys in the mush occurred in experiments with bottom temperatures as high as + 11.0 °C. However, when the bottom temperature was raised to + 11.9 °C, no plume convection was observed, although finger convection continued as usual. A method has been devised to determine the porosity of the mush by computed tomography. Using the mean value of the porosity across the mush layer and the permeability calculated by the Kozeny-Carman relationship, the critical solute Rayleigh number across the mush layer for onset of plume convection was estimated to be between 200 and 250.
The problem of Poiseuille flow in a fluid overlying a porous medium saturated with the same fluid is studied. A careful linear instability analysis is carried out. It is shown that there are three modes of instability, two belong to one eigenvalue and persist in small ranges of parameters, while beyond these parameter ranges a third corresponding to another eigenvalue prevails. These three modes are of different stability characteristics, but are triggered by the shear stress of the Poiseuille flow in the fluid layer.
The stability of electrohydrodynamic flow between two horizontal plates with a vertical electrical conductivity gradient has been investigated in the presence of an imposed weak shear flow. The weak shear flow is driven by the horizontal pressure gradient, and the electrical conductivity gradient is generated by the concentration variation of the charge-carrying solute. An external electric field is applied across the fluid layer, and then the interaction between the unstable stratification of electrohydrodynamic flow and the shear arising from the plane Poiseuille flow is studied. A linear stability analysis has been implemented by considering both the longitudinal and transverse modes. Unlike the thermally stratified plane Poiseuille flow in which the longitudinal mode always dominates the onset of instability and is virtually unaffected by the superimposed shear flow, the instability of this mixed electrohydrodynamic–Poiseuille flow system is found to depend heavily on the shear flow, and the transverse mode may prevail over the longitudinal mode when the momentum of shear flow is sufficiently small. Particularly, an oscillatory longitudinal mode is found to exist, and it may become the critical mode when the conductivity gradient is small enough. The present results verify that an imposed weak shear flow may enhance the electrohydrodynamic instability in a fluid layer with electrical conductivity gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.