We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments.
Abstract-We consider the initial-boundary value problem governed by systems of linear hyperbolic partial differential equations in the canonical diagonal form and study conditions for exponential stability when the system discontinuously switches between a finite set of modes. The switching system is fairly general in that the system matrix functions as well as the boundary conditions may switch in time. We show how the stability mechanism developed for classical solutions of hyperbolic initial boundary value problems can be generalized to the case in which weaker solutions become necessary due to arbitrary switching. We also provide an explicit dwell-time bound for guaranteeing exponential stability of the switching system when, for each mode, the system is exponentially stable. Our stability conditions only depend on the system parameters and boundary data. These conditions easily generalize to switching systems in the nondiagonal form under a simple commutativity assumption. We present tutorial examples to illustrate the instabilities that can result from switching.Index Terms-Distributed parameter systems; stability of hybrid systems; switched systems.
Abstract. We consider networked transport systems defined on directed graphs: the dynamics on the edges correspond to solutions of transport equations with space dimension one. In addition to the graph setting, a major consideration is the introduction and propagation of discontinuities in the solutions when the system may discontinuously switch modes, naturally or as a hybrid control. This kind of switching has been extensively studied for ordinary differential equations, but not much so far for systems governed by partial differential equations. In particular, we give well-posedness results for switching as a control, both in finite horizon open loop operation and as feedback based on sensor measurements in the system.
Abstract. We consider switched systems on Banach and Hilbert spaces governed by strongly continuous one-parameter semigroups of linear evolution operators. We provide necessary and sufficient conditions for their global exponential stability, uniform with respect to the switching signal, in terms of the existence of a Lyapunov function common to all modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.