Bone graft material is often required for the treatment of osseous defects. However, due to limitations and risks associated with autologous as well as allogenic bone grafting procedures, alternative strategies are needed. In this context, ex vivo tissue engineering (TE) strategies for de novo generation of bone tissue include the combined use of autologous bone-forming cells and three-dimensional (3D) porous scaffold materials serving as structural support for the cells. Three-dimensional cultivation of osteoprogenitor cells presents several challenges, for example, insufficient nutrient and oxygen transport to and removal of waste products from the cells at the interior of the scaffold. By providing physical stimulation of tissue-engineered constructs and resolving mass transport limitations bioreactor systems denote key components for bone TE strategies. A variety of dynamic 3D bioreactor concepts mimicking the native microenvironment in bone tissue, for example, spinner flasks, rotating wall vessel constructs, perfusion bioreactors, and systems based on mechanical or electromagnetic stimulation of cell/scaffold composites, have been developed. These techniques differ considerably with respect to ease of use, cost-effectiveness, and degree of additional osteogenic stimuli, as well as monitoring and manipulation options. This review provides an overview of the concepts, advantages, challenges, and potential future applications associated with current bioreactor systems for bone TE.
Bioreactors play an increasing role in tissue engineering—the generation of mammalian tissue equivalents in vitro. They can be applied for effective (stem) cell expansion, which is a crucial step concerning the fabrication of tissue engineering constructs of clinically relevant dimensions for which large cell numbers are needed. Furthermore, bioreactors are necessary for the maintenance of three‐dimensional (3D) tissue engineering constructs during cultivation ex vivo, and can be used to further stimulate the cells with a variety of physical cues. The development of novel bioreactor systems as well as mathematical modeling of their characteristics is a fast‐developing field of research. The present review provides a concise overview about recent developments in bioreactors for stem cell expansion, perfusion bioreactor systems for 3D cultures, and bioreactors for physical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.