Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Bell proved that quantum entanglement enables two space-like separated parties to exhibit classically impossible correlations. Even though these correlations are stronger than anything classically achievable, they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous communication remains impossible. This raises the question: Why are the correlations achievable by quantum mechanics not maximal among those that preserve causality? We give a partial answer to this question by showing that slightly stronger correlations would result in a world in which communication complexity becomes trivial.
Abstract. We consider a class of two-prover interactive proof systems where each prover returns a single bit to the verifier and the verifier's verdict is a function of the XOR of the two bits received. We show that, when the provers are allowed to coordinate their behavior using a shared entangled quantum state, a perfect parallel repetition theorem holds in the following sense. The prover's optimal success probability for simultaneously playing a collection of XOR proof systems is exactly the product of the individual optimal success probabilities. This property is remarkable in view of the fact that, in the classical case (where the provers can only utilize classical information), it does not hold. The theorem is proved by analyzing parities of XOR proof systems using semidefinite programming techniques, which we then relate to parallel repetitions of XOR games via Fourier analysis.
We show that quantum circuits cannot be made fault-tolerant against a depolarizing noise level ofθ = (6 − 2 √ 2)/7 ≈ 45%, thereby improving on a previous bound of 50% (due to Razborov [18]). Our precise quantum circuit model enables perfect gates from the Clifford group (CNOT, Hadamard, S, X, Y , Z) and arbitrary additional one-qubit gates that are subject to depolarizing noiseθ. We prove that this set of gates cannot be universal for arbitrary (even classical) computation, from which the upper bound on the noise threshold for fault-tolerant quantum computation follows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.