Anthropogenic forcing has led to an increased extent of hypoxic bottom areas in the Baltic Sea during recent decades. The Baltic Sea ecosystem is naturally prone to the development of hypoxic conditions due to its geographical, hydrographical, geological, and climate features. Besides the current spreading of hypoxia, the Baltic Sea has experienced two extensive periods of hypoxic conditions during the Holocene, caused by changing climate conditions during the Holocene Thermal Maximum (HTM; 8-4.8 cal ka BP) and the Medieval Climate Anomaly (MCA; 1-0.7 cal ka BP). We studied the variations in surface and bottom water salinity and primary productivity and their relative importance for the development and termination of hypoxia by using microfossil and geochemical data from a sediment core retrieved from the Landsort Deep during IODP Expedition 347 (Site M0063). Our findings demonstrate that increased salinity was of major importance for the development of hypoxic conditions during the HTM. In contrast, we could not clearly relate the termination of this hypoxic period to salinity changes. The reconstructed high primary productivity associated with the hypoxic period during the MCA is not accompanied by considerable increases in salinity. Our proxies for salinity show a decreasing trend before, during and after the MCA. Therefore, we suggest that this period of hypoxia is primarily driven by increasing temperatures due to the warmer climate. These results highlight the importance of natural climate driven changes in salinity and primary productivity for the development of hypoxia during a warming climate.
Premise
Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia‐old resting spores buried in sediments. We show for the first time the revival, viability, and germination rate of resting spores of the diatom Chaetoceros deposited in sub‐seafloor sediments from three ages (recent: 0 to 80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present.
Methods
Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species.
Results
We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and that the vegetative reproduction in recent and ancient resting spores varies. The time taken to germinate is three hours to 2 to 3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores, respectively. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri.
Conclusions
We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long‐term evolutionary studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.