The European Union policy of encouraging renewable energy sources and a sustainable and safe low-carbon economy requires flexible energy storage systems (FESSs), such as pumped-storage hydropower (PSH) systems. Energy storage systems are the key to facilitate a high penetration of the renewable energy sources in the electrical grids. Disused mining structures in closed underground coal mines in NW Spain have been selected as a case study to analyze the construction of underground pumped-storage hydropower (UPSH) plants. Mine water, depth and subsurface space in closured coal mines may be used for the construction of FESSs with reduced environmental impacts. This paper analyzes the stability of a network of tunnels used as a lower water reservoir at 450 m depth in sandstone and shale formations. Empirical methods based on rock mass classification systems are employed to preliminarily design the support systems and to determinate the rock mass properties. In addition, 3D numerical modelling has been conducted in order to verify the stability of the underground excavations. The deformations and thickness of the excavation damage zones (EDZs) around the excavations have been evaluated in the simulations without considering a support system and considering systematic grouted rock bolts and a layer of reinforced shotcrete as support system. The results obtained show that the excavation of the network of tunnels is technically feasible with the support system that has been designed.
In the current energy context, intermittent and non-dispatchable renewable energy sources, such as wind and solar photovoltaic (generation does not necessarily correspond to demand), require flexible solutions to store energy. Energy storage systems (ESS) are able to balance the intermittent and volatile generation outputs of variable renewable energies (VRE). ESS provide ancillary services such as: frequency, primary and voltage control to the power grid. In order to fulfil the power system control, ESS can switch within seconds for different operation modes. Many times, ESS imply environment impacts on landscape and society. To solve this problem, disused underground spaces, such as closed mines, can be used as underground reservoir for energy storage plants. In this paper, a comparative analysis between underground pumped storage hydropower (UPSH), compressed air energy storage (CAES) and suspended weight gravity energy storage (SWGES) with suspended weights in abandoned mine shafts is carried out. Pumped storage hydropower (PSH) is the most mature concept and account for 99% of bulk storage capacity worldwide. The results obtained show that in UPSH and CAES plants, the amount of stored energy depends mainly on the underground reservoir capacity, while in SWGES plants depends on the depth of the mine shafts and the mass. The energy stored in a SWGES plant (3.81 MWh cycle-1 with 600 m of usable depth assuming 3,000 tonne suspended weight) is much lower than UPSH and CAES plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.