Seed dormancy is a critical factor in determining seed persistence in the soil and can create oilseed rape (Brassica napus L.) volunteer problems in subsequent years. A 3-year field trial in south-west Germany investigated the effects of seed maturity on primary dormancy and disposition to secondary dormancy of ten oilseed rape varieties (lines) in 2009 and 2010, and of five imidazolinone-tolerant varieties (hybrids) in 2014. Fresh seeds were sampled weekly from about 30 d after flowering (DAF) until full maturity and tested for dormancy on the day of seed collection. Primary dormancy decreased from a high level of 70−99% at 30−40 DAF to 0−15% after 7−14 d, coinciding with embryo growth and depending on variety and year. For some oilseed rape varieties, 30−50% primary dormancy was still present in mature seeds. Depending on variety, disposition to secondary dormancy was nearly zero at the early stage of seed development, increased to its highest level during development, and decreased afterwards. Some varieties maintained a high level of secondary dormancy at maturity or during the entire seed development period. The correlation between primary dormancy and secondary dormancy was significantly positive at early seed development (r = 0.95, 50 DAF), but declined in mature seeds. Environmental conditions during ripening are also expected to affect dormancy dynamics. The deeper insights into dormancy formation of oilseed rape provide the possibility to improve harvest time and harvest method, and to better assess the potential for volunteer oilseed rape in following crops.
In a two-year field trial, the effect of nitrogen (N) and sulfur (S) fertilization was investigated on grain yield, grain quality parameters, formation of acrylamide (AA), and the precursor free asparagine (Asn) in organically and conventionally produced winter wheat cultivars. In both production systems, different types, amounts, and temporal distributions of N were tested. The the effect of S fertilizer types and amounts on free Asn was only tested in the conventional farming system. Within both cropping systems, grain yield and baking quality were significantly influenced by N treatment while the effect on free Asn was only minor. Especially within the organic farming system, increasing N fertilization levels did not increase free Asn significantly. A slight trend of increasing free Asn levels with an intensified N supply was observed, especially in the presence of crude protein contents of 14% or higher. However, only N amounts of 180 kg N ha−1 or higher increased the probability of high free Asn contents considerably, while N supply below that amount led to free Asn values similar to the unfertilized controls. The results indicated that good baking quality can be achieved without significantly increasing free Asn levels. In addition, cultivars affected the levels of free Asn significantly. Compared to cv. Bussard and Naturastar, cv. Capo exhibited the lowest AA formation potential at an N supply of 180 kg N ha−1 while simultaneously reaching a crude protein content > 15% (conventional) and > 12% (organic). Thus, it seems that cultivars differ in their ability to store and incorporate free Asn into proteins. Over all trials, a relation of free Asn and AA was shown by R2 = 0.77, while a relation of free Asn and protein was only R2 = 0.36. Thus, lowering free Asn by adjusting N treatments should not necessarily affect baking quality. S fertilization within conventional farming did not change the free Asn amount or crude protein significantly, probably due to the fact that soil was not sulfate-deficient. In summary, it was evident that free Asn amounts in wheat varied widely both within cultivars and between cropping systems. In order to clearly unravel genotypic differences and their interaction with environmental factors and especially N fertilization, further research is needed.
This study investigated the impact of organically grown cereals on the level of free asparagine (Asn) with simultaneous consideration of grain yields and flour qualities over three growing seasons in Germany. Additionally, the relation of free Asn and acrylamide (AA) was investigated. By including free Asn results of a second trial site, heritability of the trait free Asn was calculated. Free Asn was significantly influenced by species and within species by cultivars. Rye showed the highest free Asn amount, followed by einkorn, emmer, wheat, and spelt. Replacing rye with spelt would reduce free Asn by 85%. Cultivars differed in free Asn by up to 67% (wheat), 55% (spelt), and 33% (rye). Year significantly influenced free Asn levels. Heritability was high for wheat and spelt concerning locations, but regarding years, heritability was low for wheat but high for spelt and rye. For organically grown cereals, the relation between free Asn and AA formation has never been investigated. Across species and years, a correlation of R2 = 0.69 *** was found. Thus, free Asn can serve as an indicator for AA formation. In conclusion, the level of free Asn can be highly influenced by proper selection of species and cultivars.
As bakery products contribute considerably to the daily intake of the carcinogen acting substance acrylamide (AA), the aim of this study was to evaluate the impact of the management system (conventional vs. organic farming) on AA precursor levels of free asparagine (Asn) across different cultivars of the cereal species, namely winter wheat (Triticum aestivum), winter spelt (Triticum aestivum ssp. spelta) and winter rye (Secale cereale) with simultaneous consideration of gained grain yields and flour qualities. For this purpose, orthogonal field trials were established at two sites in Southwest Germany over two growing seasons (2006–2007 and 2007–2008). The results indicated a significant impact of the management system on free Asn contents in white flour. Across all species, free Asn contents in the white flour was 26% lower under organic compared to conventional farming. The impact of the management system on individual cultivars was obvious with a maximum reduction in free Asn contents of 50% in wheat cultivars if organically produced (e.g., for cultivars Ludwig, Privileg, Capo). For spelt, a significant impact of the management system was only found in 2008 with a reduction in free Asn of up to 25% if organically produced. Across both cropping systems, cultivar Franckenkorn reached the lowest levels of free Asn. For rye, a significant impact of the management system was observed only in 2007 with 33% higher Asn amounts in the conventional management system. Independent of the cropping system, rye reached the highest levels of free Asn followed by wheat and spelt. Depending on species, there was also an impact of the two systems on crude protein. The organically cropped wheat had a significantly lower level, but this was not observed for spelt and for rye only in 2007. The possible reason for the low free Asn content in the organically produced wheat flour could partially be the lower crude protein amount. Furthermore, the results indicated that lower AA contents in bakery products can be achieved by proper selection of species (e.g., 66% lower if rye is replaced by wheat) and cultivars. With an appropriate choice of the cultivar, a reduction of up to 65% was possible within wheat, along with a reduction of 44% within spelt and 12.5% within rye. In summary, the results indicated that organically produced wheat especially offers the opportunity to significantly lower the AA potential of bread and bread rolls by the choice of raw materials low in free Asn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.