In the pursuit of materials with exceptional mechanical properties, a machine-learning model is developed to direct the synthetic efforts toward compounds with high hardness by predicting the elastic moduli as a proxy. This approach screens 118 287 compounds compiled in crystal structure databases for the materials with the highest bulk and shear moduli determined by support vector machine regression. Following these models, a ternary rhenium tungsten carbide and a quaternary molybdenum tungsten borocarbide are selected and synthesized at ambient pressure. High-pressure diamond anvil cell measurements corroborate the machine-learning prediction of the bulk modulus with less than 10% error, as well as confirm the ultraincompressible nature of both compounds. Subsequent Vickers microhardness measurements reveal that each compound also has an extremely high hardness exceeding the superhard threshold of 40 GPa at low loads (0.49 N). These results show the effectiveness of materials development through state-of-the-art machine-learning techniques by identifying functional inorganic materials.
Mantle shear velocity (Vs) structure beneath the Transportable Array (TA) in Alaska and northwestern Canada is imaged by joint inversion of Rayleigh wave dispersion and teleseismic S wave travel times. The study connects previously unsampled parts of northern and western Alaska with portions of southern Alaska imaged with earlier seismic arrays. The new Vs tomography shows contrasting lithospheric structure in the plate interior with lower Vs shallow upper mantle indicative of thinner thermal lithosphere south of the Brooks Range and along the transform margin. Higher Vs down to~200 km beneath the Brooks Range and northern coast is consistent with the presence of a cold stable lithospheric root that may help guide intraplate deformation to the south. In the subduction-to-transform transition, a potential slab fragment is imaged beneath the Wrangell volcanic field where modern subduction has slowed due to the thick buoyant crust of the Yakutat terrane.Plain Language Summary We use a groundbreaking seismic data set from the EarthScope project to investigate the structure of the upper mantle beneath Alaska and northwestern Canada to better understand the effects of ongoing subduction and distinctive blocks within the continental lithosphere. Measurements of seismic body and surface waves are used to construct seismic images from the surface down to 800-km depth. The images reveal cold thick blocks beneath northern Alaska and the Yukon Territory adjacent to warmer thinner blocks beneath younger geologic provinces to the south, suggesting that cold strong lithosphere in the north helps guide the extent of intraplate deformation driven by the southern plate boundary. The model also identifies a potential slab fragment beneath the Wrangell volcanic field, suggesting slab contributions to volcanic activity and a growing slab tear.
We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lower Vs in the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐D Vs inversion suggests that imaging the top 3‐km Vs structure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity.
Through the Alaska Transportable Array deployment of over 200 stations, we create a 3‐D tomographic model of Alaska with sensitivity ranging from the near surface (<1 km) into the upper mantle (~140 km). We perform a Markov chain Monte Carlo joint inversion of Rayleigh wave ellipticity and phase velocities, from both ambient noise and earthquake measurements, along with receiver functions to create a shear wave velocity model. We also use a follow‐up phase velocity inversion to resolve interstation structure. By comparing our results to previous tomography, geology, and geophysical studies we are able to validate our findings and connect localized near‐surface studies with deeper, regional models. Specifically, we are able to resolve shallow basins, including the Copper River, Cook Inlet, Yukon Flats, Nenana, and a variety of other shallower basins. Additionally, we gain insight on the interaction between the upper mantle wedge, asthenosphere, and active and nonactive volcanism along the Aleutians and Denali volcanic gap, respectively. We observe thicker crust beneath the Brooks Range and south of the Denali fault within the Wrangellia Composite Terrane and thinner crust in the Yukon Composite Terrane in interior Alaska. We also gain new perspective on the Wrangell Volcanic Field and its interaction between surrounding asthenosphere and the Yakutat Terrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.