Background & Aims: Epithelial regeneration is essential for homeostasis and mucosal barrier repair. In infectious and immune-mediated intestinal diseases, interleukin (IL)-10 is thought to enhance these processes. We aimed to define the mechanism by which IL-10 played in mucosal healing or injury.Methods: Intestinal stem cells (ISCs) cultures and mice were treated with recombinant mice IL-10 (rmIL-10). The level of cell proliferation, differentiation, death and related signaling pathways for self-renewal of ISCs were measured in vitro and in vivo.Results: It was uncovered that rmIL-10 increased the size and death, but reduced the total number of organoids. In addition, rmIL-10 depleted Lgr5+ ISCs and reduced epithelial proliferation, but enhanced the differentiation of epithelial cells and expanded numbers of transit-amplifying (TA) cells. These changes are related to the decrease of Wnt and Notch signals in vivo and in vitro. Meanwhile, increased expression of Paneth cells and decreased expression of enteroendocrine cells and goblet cells were induced by rmIL-10.Conclusions: IL-10 reduces the survival of Lgr5+ ISCs and proliferation of epithelial cells by inhibiting Notch and Wnt signaling, but promotes enhanced the differentiation of epithelial cells and expanded numbers of TA cells. Therefore, IL-10 acts as an anti-inflammatory factor, but may damage intestinal mucosa repair and maybe a potential target for the treatment of intestinal injury.
Background Hepatic inflammation is a common initiator of liver diseases and considered as the primary driver of hepatocellular carcinoma (HCC). However, the precise mechanism of inflammation-induced HCC development and immune evasion remains elusive and requires extensive investigation. This study sought to identify the new target that is involved in inflammation-related liver tumorigenesis. Methods RNA-sequencing (RNA-seq) analysis was performed to identify the differential gene expression signature in primary human hepatocytes treated with or without inflammatory stimulus. A giant E3 ubiquitin protein ligase, HECT domain and RCC1-like domain 2 (HERC2), was identified in the analysis. Prognostic performance in the TCGA validation dataset was illustrated by Kaplan–Meier plot. The functional role of HERC2 in HCC progression was determined by knocking out and over-expressing HERC2 in various HCC cells. The precise molecular mechanism and signaling pathway networks associated with HERC2 in HCC stemness and immune evasion were determined by quantitative real-time PCR, immunofluorescence, western blot, and transcriptomic profiling analyses. To investigate the role of HERC2 in the etiology of HCC in vivo, we applied the chemical carcinogen diethylnitrosamine (DEN) to hepatocyte-specific HERC2-knockout mice. Additionally, the orthotopic transplantation mouse model of HCC was established to determine the effect of HERC2 during HCC development. Results We found that increased HERC2 expression was correlated with poor prognosis in HCC patients. HERC2 enhanced the stemness and PD-L1-mediated immune evasion of HCC cells, which is associated with the activation of signal transducer and activator of transcription 3 (STAT3) pathway during the inflammation-cancer transition. Mechanically, HERC2 coupled with the endoplasmic reticulum (ER)-resident protein tyrosine phosphatase 1B (PTP1B) and limited PTP1B translocation from ER to ER-plasma membrane junction, which ameliorated the inhibitory role of PTP1B in Janus kinase 2 (JAK2) phosphorylation. Furthermore, HERC2 knockout in hepatocytes limited hepatic PD-L1 expression and ameliorated HCC progression in DEN-induced mouse liver carcinogenesis. In contrast, HERC2 overexpression promoted tumor development and progression in the orthotopic transplantation HCC model. Conclusion Our data identified HERC2 functions as a previously unknown modulator of the JAK2/STAT3 pathway, thereby promoting inflammation-induced stemness and immune evasion in HCC.
Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.
Intestinal ischemia/reperfusion (I/R) injury is a severe clinical condition lacking diagnostic markers and has poorly understood molecular mechanisms. Although plasma exosomal circular RNAs (circRNAs) are valuable biomarkers and therapeutic targets for various diseases, their role in intestinal I/R injury remains unknown. This study screens the expression profile of circRNAs in intestinal tissue exosomes collected from intestinal I/R mice and identified circEZH2_005 as a significantly downregulated exosomal circRNA in the plasma of clinical cardiac surgery patients who developed postoperative intestinal I/R injury. The expression of plasma exosomal circEZH2_005 was negatively correlated with the intestinal injury grade. Notably, exosomal circEZH2_005 displayed a significant diagnostic value for intestinal injury induced by I/R. Mechanistically, circEZH2_005 was highly expressed in intestinal crypt cells. CircEZH2_005 upregulation significantly promoted the proliferation of Lgr5+ stem cells by direct interaction with hnRNPA1 and enhanced Gprc5a stability, thereby alleviating I/R-induced intestinal mucosal damage. Hence, exosomal circEZH2_005 may help intestinal I/R injury diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.