Photosynthetic bacteria emerged on Earth more than 3 Gyr ago. To date, despite a long evolutionary history, species containing (bacterio)chlorophyll-based reaction centers have been reported in only 6 out of more than 30 formally described bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, and Acidobacteria. Here we describe a bacteriochlorophyll a-producing isolate AP64 that belongs to the poorly characterized phylum Gemmatimonadetes. This red-pigmented semiaerobic strain was isolated from a freshwater lake in the western Gobi Desert. It contains fully functional type 2 (pheophytin-quinone) photosynthetic reaction centers but does not assimilate inorganic carbon, suggesting that it performs a photoheterotrophic lifestyle. Full genome sequencing revealed the presence of a 42.3-kb-long photosynthesis gene cluster (PGC) in its genome. The organization and phylogeny of its photosynthesis genes suggests an ancient acquisition of PGC via horizontal transfer from purple phototrophic bacteria. The data presented here document that Gemmatimonadetes is the seventh bacterial phylum containing (bacterio)chlorophyllbased phototrophic species. To our knowledge, these data provide the first evidence that (bacterio)chlorophyll-based phototrophy can be transferred between distant bacterial phyla, providing new insights into the evolution of bacterial photosynthesis.anoxygenic photosynthesis | horizontal gene transfer | bacterial pigments | aerobic photoheterotroph | fluorescence imaging system
In higher plants, the splicing of organelle-encoded mRNA involves a complex collaboration with nuclear-encoded proteins. Pentatricopeptide repeat (PPR) proteins have been implicated in these RNA-protein interactions. In this study, we performed the cloning and functional characterization of maize Defective kernel 35 (Dek35). The dek35-ref mutant is a lethal-seed mutant with developmental deficiency. Dek35 was cloned through Mutator tag isolation and further confirmed by four additional independent mutant alleles. Dek35 encodes an P-type PPR protein that targets the mitochondria. The dek35 mutation causes significant reduction in the accumulation of DEK35 proteins and reduced splicing efficiency of mitochondrial nad4 intron 1. Analysis of mitochondrial complex in dek35 immature seeds indicated severe deficiency in the complex I assembly and NADH dehydrogenase activity. Transcriptome analysis of dek35 endosperm revealed enhanced expression of genes involved in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function and activity. Collectively, these results indicate that Dek35 encodes an PPR protein that affects the cis-splicing of mitochondrial nad4 intron 1 and is required for mitochondrial function and seed development.
A red-pigmented, bacteriochlorophyll (BChl) a-producing strain, AP64T, was isolated previously from the freshwater Swan Lake located in the western Gobi Desert. Based on its 16S rRNA gene sequence identity (96.1 %) to the type strain Gemmatimonas aurantiaca T-27T, the new isolate was tentatively classified as a member of the bacterial phylum Gemmatimonadetes. Here, we report its formal description and polyphasic characterization. Strain AP64T grew best on agar media under 9.8–15.2 % atmospheric oxygen. The cells were rods, dividing by symmetrical or asymmetrical binary fission. Budding structures were also observed. Its genomic DNA G+C content was 64.4 % (from the draft genome sequence). Phylogenetic analysis based on the 16S rRNA gene sequence clearly separated AP64T from related species. Its genotypic differentiation from phylogenetically close relatives was further supported by performing in silico DNA–DNA hybridization and calculating average nucleotide identity, whereas the high percentage (67.3 %) of shared conserved proteins between strain AP64T and Gemmatimonas aurantiaca T-27T supports the classification of the two strains into the same genus. Strain AP64T contained C16 : 1, C14 : 1 and C18 : 1ω9c as predominant fatty acids. The main respiratory quinone was menaquinone 8 (MK-8). The most distinctive feature of strain AP64T was the presence of fully functional purple bacterial photosynthetic reaction centres. The main CO2-fixation pathways were absent. Strain AP64T was capable of growth and BChl production in constant darkness. Thus, strain AP64T is a facultatively photoheterotrophic organism. It represents a novel species of the genus Gemmatimonas, for which the name Gemmatimonas phototrophica sp. nov. is proposed. The type strain is AP64T ( = DSM 29774T = MCCC 1K00454T). Emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca are also provided.
The present review discusses the findings of cryptosporidiosis research conducted in cattle in China and highlights the currently available information on Cryptosporidium epidemiology, genetic diversity, and distribution in China, which is critical to understanding the economic and public health importance of cryptosporidiosis transmission in cattle. To date, 10 Cryptosporidium species have been detected in cattle in China, with an overall infection rate of 11.9%. The highest rate of infection (19.5%) was observed in preweaned calves, followed by that in juveniles (10.69%), postweaned juveniles (9.0%), and adult cattle (4.94%). The dominant species were C. parvum in preweaned calves and C. andersoni in postweaned, juvenile, and adult cattle. Zoonotic Cryptosporidium species (C. parvum and C. hominis) were found in cattle, indicating the possibility of transmission between humans and cattle. Different cattle breeds had significant differences in the prevalence rate and species of Cryptosporidium. This review demonstrates an age-associated, breed-associated, and geographic-related occurrence of Cryptosporidium and provides references for further understanding of the epidemiological characteristics, and for preventing and controlling the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.