The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.
Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.
A recently developed pneumonia caused by SARS-CoV-2 bursting in Wuhan, China, has quickly spread across the world. We report the clinical characteristics of 82 cases of death from COVID-19 in a single center. Clinical data on 82 death cases laboratory-confirmed as SARS-CoV-2 infection were obtained from a Wuhan local hospital's electronic medical records according to previously designed standardized data collection forms. All patients were local residents of Wuhan, and a large proportion of them were diagnosed with severe illness when admitted. Due to the overwhelming of our system, a total of 14 patients (17.1%) were treated in the ICU, 83% of deaths never received Critical Care Support, only 40% had mechanical ventilation support despite 100% needing oxygen and the leading cause of death being pulmonary. Most of the patients who died were male (65.9%). More than half of the patients who died were older than 60 years (80.5%), and the median age was 72.5 years. The bulk of the patients who died had comorbidities (76.8%), including hypertension (56.1%), heart disease (20.7%), diabetes (18.3%), cerebrovascular disease (12.2%), and cancer (7.3%). Respiratory failure remained the leading cause of death (69.5%), followed by sepsis/MOF (28.0%), cardiac failure (14.6%), hemorrhage (6.1%), and renal failure (3.7%). Furthermore, respiratory, cardiac, hemorrhagic, hepatic, and renal damage were found in 100%, 89%, 80.5%, 78.0%, and 31.7% of patients, respectively. On admission, lymphopenia (89.2%), neutrophilia (74.3%), and thrombocytopenia (24.3%) were usually observed. Most patients had a high neutrophil-to-lymphocyte ratio of >5 (94.5%), high systemic immune-inflammation index of >500 (89.2%), and increased C-reactive protein (100%), lactate dehydrogenase (93.2%), and D-dimer (97.1%) levels. A high level of IL-6 (>10 pg/ml) was observed in all detected patients. The median time from initial symptoms to death was 15 days (IQR 11-20), and a significant association between aspartate aminotransferase (p = 0.002), alanine aminotransferase (p = 0.037) and time from initial symptoms to death was remarkably observed. Older males with comorbidities are more likely to develop severe disease and even die from SARS-CoV-2 infection. Respiratory failure is the main cause of COVID-19, but the virus itself and cytokine release syndrome-mediated damage to other organs, including cardiac, renal, hepatic, and hemorrhagic damage, should be taken seriously as well.
Introduction: A recently emerging respiratory disease named coronavirus disease 2019 (COVID-19) has quickly spread across the world. This disease is initiated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and uncontrolled cytokine storm, but it remains unknown as to whether a robust antibody response is related to clinical deterioration and poor outcome in COVID-19 patients. Methods: Anti-SARS-CoV-2 IgG and IgM antibodies were determined by chemiluminescence analysis (CLIA) in COVID-19 patients at a single center in Wuhan. Median IgG and IgM levels in acute and convalescent-phase sera (within 35 days) for all included patients were calculated and compared between severe and non-severe patients. Immune response phenotyping based on the late IgG levels and neutrophil-to-lymphocyte ratio (NLR) was characterized to stratified patients into different disease severities and outcomes. Results: A total of 222 patients were included in this study. IgG was first detected on day 4 of illness, and its peak levels occurred in the fourth week. Severe cases were more frequently found in patients with high IgG levels, compared to those with low IgG levels (51.8 vs. 32.3%; p = 0.008). Severity rates for patients with NLR hi IgG hi , NLR hi IgG lo , NLR lo IgG hi , and NLR lo IgG lo phenotype were 72.3, 48.5, 33.3, and 15.6%, respectively (p < 0.0001). Furthermore, severe patients with NLR hi IgG hi , NLR hi IgG lo had higher inflammatory cytokines levels including IL-2, IL-6 and IL-10, and decreased CD4+ T cell count compared to those with NLR lo IgG lo phenotype (p < 0.05). Recovery rates for severe patients with NLR hi IgG hi , NLR hi IgG lo , NLR lo IgG hi , and NLR lo IgG lo phenotype were 58.8% (20/34), 68.8% (11/16), 80.0% (4/5), and 100% (12/12), respectively (p = 0.0592). Dead cases only occurred in NLR hi IgG hi and NLR hi IgG lo phenotypes. Zhang et al. Immune Phenotyping for COVID-19 Patients Conclusions: COVID-19 severity is associated with increased IgG response, and an immune response phenotyping based on the late IgG response and NLR could act as a simple complementary tool to discriminate between severe and non-severe COVID-19 patients, and further predict their clinical outcome.
Macrophages are important tumor-infiltrating cells and play pivotal roles in tumor growth and metastasis. Macrophages participate in immune responses to tumors in a polarized manner: classic M1 macrophages produce interleukin (IL) 12 to promote tumoricidal responses, whereas M2 macrophages produce IL10 and help tumor progression. The mechanisms governing macrophage polarization are unclear. Here, we show that the M2-like tumor-associated macrophages (TAM) have a lower level of Notch pathway activation in mouse tumor models. Forced activation of Notch signaling increased M1 macrophages which produce IL12, no matter whether M1 or M2 inducers were applied. When Notch signaling was blocked, the M1 inducers induced M2 response in the expense of M1. Macrophages deficient in canonical Notch signaling showed TAM phenotypes. Forced activation of Notch signaling in macrophages enhanced their antitumor capacity. We further show that RBP-J-mediated Notch signaling regulates the M1 versus M2 polarization through SOCS3. Therefore, Notch signaling plays critical roles in the determination of M1 versus M2 polarization of macrophages, and compromised Notch pathway activation will lead to the M2-like TAMs. These results provide new insights into the molecular mechanisms of macrophage polarization and shed light on new therapies for cancers through the modulation of macrophage polarization through the Notch signaling. Cancer Res; 70(12); 4840-9. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.