We examined the anti-tumour activity of exosomes derived from dendritic cells (DCs) in combination with cyclophosphamide (CTX) and polyinosinic-polycytidylic acid sodium salt (poly I:C). DCs were pulsed with L1210 lymphocytic leukaemia cell antigen and lipopolysaccharide. The exosomes that the DCs secreted were purified. In vitro, the anti-tumour activity of exosomes was assessed by measuring their ability to induce spleen cell proliferation and the extent to which they induced spleen cells to kill L1210 cells. Poly I:C was able to induce DC maturation. DC-derived exosomes stimulated spleen cell proliferation and enhanced the cytotoxic effects of spleen cells in vitro. DC-derived exosomes, in combination with CTX and poly I:C, suppressed L1210 tumour growth in vivo and gave the greatest prolongation of survival time in tumour-bearing DBA2 mice. These findings suggest that this combination of a tumour vaccine, a conventional anti-cancer agent and a promoter of DC maturation might be a useful anti-cancer therapy.
The aim of this study was to investigate the effects of resveratrol on endothelial progenitor cell (EPC) activities in vitro and on the mobilization of circulating EPCs, and reendothelialization in balloon-injured aorta of rats. After being isolated, cultured, and characterized, human EPCs were stimulated with resveratrol. We found that a low concentration of resveratrol (1 microM) led to significant enhanced activities of proliferation, migration, and adhesion, as well as promoting endothelial nitric acid synthetase (eNOS) expression in EPCs, whereas a high concentration (60 microM) inhibited the aforementioned functions and eNOS expression. In a rat model of injured aorta, a low dosage of resveratrol (10 mg/kg) increased the amount of EPCs in rat circulation as compared with placebo, whereas the result of a high dosage (50 mg/kg) did not reach statistical difference. In addition, 10 mg/kg of resveratrol both accelerated reendothelialization and inhibited neointimal formation; however, 50 mg/kg only reduced neointimal formation, which was not as effective as the previous one. eNOS expression in injured arteries was potently enhanced in the 10 mg/kg group, but not in the 50 mg/kg group. These findings suggest that a low dosage of resveratrol could markedly raise the proliferative, migrative, and adhesive activities of EPCs and upgrade eNOS expression in vitro as well as increase EPC mobilization, enhance eNOS expression, and accelerate the repair of injured artery; however, a high dosage cannot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.