By using molecular dynamics (MD) method, the tensile behavior of ultra-thin ZnO nanowires in <0001 > orientation with three different diameters have been investigated respectively. Through the numerical simulations, the tensile properties including Young’s modulus and yielding stress are obtained as functions of strain rates, temperatures and diameter sizes. The simulation results indicate that the nanowire Young’s modulus and yielding stress would decrease with the increasing of diameter size. In addition, a significant dependence of tensile properties on temperature was also observed with the Young’s modulus and yielding stress decreasing on average by 8% and 18% respectively, while the temperature rises from 0.1 K to 400 K. However, in our simulations the Young’s modulus and yielding stress have no obvious change with different strain rates. Lastly, the structure of ultra-thin ZnO nanowires could be transformed at the strain of ∼7%-11% while the nanowires eventually fracture at the strain of nearly 15%.
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 10 10 electrons/cm 3 . An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations. Published by AIP Publishing.
A microwave plasma generator (MPG) of a sub-millimeter scale might be suitable for biomedical applications. However, there are still many unknowns regarding the MPG discharge behavior at this scale and specific conditions. A two-dimensional MPG model at the millimeter scale and its simulation and relative calculation in the COMSOL Multiphysics software are presented. A MPG filled with argon and helium is simulated, respectively. The frequency of a microwave source of about 5 GHz is considered. The number density and temperature of electrons as well as chemical composition are obtained at different power and pressure conditions. The electron density peaks slightly downstream of the crossing point, and the electron density is slightly asymmetrically in the y-plane due to the fact that the electromagnetic waves are absorbed asymmetrically. The electron temperature is relatively low everywhere, in part, due to the high operating pressure. The electron temperature peaks directly underneath the wave guide where the wave is absorbed. The electron density increases with the increase in the internal pressure and the input power of the MPG, the electron temperature decreases with the increase in the internal pressure of the MPG, but the electron temperature cannot be affected by the input power change of MPG. The amount of excited Ar+ and Ars (metastable atom) increases with the increase in the input power and pressure of MPG, but the amount of excited Ar almost remained unchanged. In addition, the amount of excited He almost remained unchanged, while the amount of excited He+, Hes (metastable atom), and He2+ increased with the increase in the input power and pressure of MPG. The simulation results of this model are thus informative for understanding the physical characteristics of millimeter-sized MPG, and it will provide a solid basis for the future development of such hardware in small plasma capsules for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.