Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au-S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridization ability. We herein report a novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications. We have demonstrated that poly adenine (polyA) can serve as an effective anchoring block for preferential binding with the AuNP surface, and the appended recognition block adopts an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can also be systematically modulated by adjusting the length of the polyA block. Significantly, this diblock oligonucleotide strategy results in DNA-AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA sensor.
Poly(ethylene oxide) (PEO)‐based electrolytes are promising for all‐solid‐state batteries but can only be used above room temperature due to the high‐degree crystallization of PEO and the intimate affinity between ethylene oxide (EO) chains and lithium ions. Here, a homogeneous‐inspired design of PEO‐based solid‐state electrolytes with fast ion conduction is proposed. The homogeneous PEO‐based solid‐state electrolyte with an adjusted succinonitrile (SN) and PEO molar ratio simultaneously suppresses the PEO crystallization and mitigates the affinity between EO and Li+. By adjusting the molar ratio of SN to PEO (SN:EO ≈ 1:4), channels providing fast Li+ transport are formed within the homogeneous solid‐state polymer electrolyte, which increases the ionic conductivity by 100 times and enables their application at a low temperature (0–25 °C), together with the uniform lithium deposition. This modified PEO‐based electrolyte also enables a LiFePO4 cathode to achieve a superior Coulombic efficiency (>99%) and have a long life (>750 cycles) at room temperature. Moreover, even at a low temperature of 0 °C, 82% of its room‐temperature capacity remains, demonstrating the great potential of this electrolyte for practical solid‐state lithium battery applications.
Proton transport in nanochannels under humid conditions is crucial for the application in energy storage and conversion. However, existing materials, including Nafion, suffer from limited conductivity of up to 0.2 siemens per centimeter. We report a class of membranes assembled with two-dimensional transition-metal phosphorus trichalcogenide nanosheets, in which the transition-metal vacancies enable exceptionally high ion conductivity. A Cd0.85PS3Li0.15H0.15 membrane exhibits a proton conduction dominant conductivity of ~0.95 siemens per centimeter at 90° Celsius and 98% relative humidity. This performance mainly originates from the abundant proton donor centers, easy proton desorption, and excellent hydration of the membranes induced by cadmium vacancies. We also observed superhigh lithium ion conductivity in Cd0.85PS3Li0.3 and Mn0.77PS3Li0.46 membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.