Design of stable adsorbents for selective gold recovery with large capacity and fast adsorption kinetics is of great challenge, but significant for the economy and the environment. Herein, we show the design and preparation of an irreversible amide‐linked covalent organic framework (COF) JNU‐1 via a building block exchange strategy for efficient recovery of gold. JNU‐1 was synthesized through the exchange of 4,4′‐biphenyldicarboxaldehyde (BA) in mother COF TzBA consisting of 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)trianiline (Tz) and BA with terephthaloyl chloride. The irreversible amide linked JNU‐1 gave good stability, unprecedented fast kinetics, excellent selectivity and outstanding adsorption capacity for gold recovery. X‐ray photoelectron spectroscopy along with thermodynamic study and quantum mechanics calculation reveals that the excellent performance of JNU‐1 for gold recovery results from the formation of hydrogen bonds C(N)−H⋅⋅⋅Cl and coordinate interaction of O and Au. The rational design of irreversible bonds as both inherent linkage and functional groups in COFs is a promising way to prepare stable COFs for diverse applications.
Design of stable adsorbents for selective gold recovery with large capacity and fast adsorption kinetics is of great challenge, but significant for the economy and the environment. Herein, we show the design and preparation of an irreversible amide‐linked covalent organic framework (COF) JNU‐1 via a building block exchange strategy for efficient recovery of gold. JNU‐1 was synthesized through the exchange of 4,4′‐biphenyldicarboxaldehyde (BA) in mother COF TzBA consisting of 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)trianiline (Tz) and BA with terephthaloyl chloride. The irreversible amide linked JNU‐1 gave good stability, unprecedented fast kinetics, excellent selectivity and outstanding adsorption capacity for gold recovery. X‐ray photoelectron spectroscopy along with thermodynamic study and quantum mechanics calculation reveals that the excellent performance of JNU‐1 for gold recovery results from the formation of hydrogen bonds C(N)−H⋅⋅⋅Cl and coordinate interaction of O and Au. The rational design of irreversible bonds as both inherent linkage and functional groups in COFs is a promising way to prepare stable COFs for diverse applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.