Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe- and N- doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m2 g−1. In 0.1 M HClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 μg Pt cm−2). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H2-air single cell, the maximum power density reached ~0.33 W cm2 at 0.47 V.
In this work, the effects of the addition of transition metals (Mn, Fe, Co, Ni, Cu) on the structure and performance of the doped carbon catalysts M-PANI/C-Mela are investigated. The results show that the doping of various transition metals affected structures and performances of the catalysts significantly. Doping with Fe and Mn leads to a catalyst with a graphene-like structure, and doping with Co, Ni, and Cu leads to a disordered or nanosheet structure. The doping of transition metals can enhance the performance of the catalysts, and their ORR activity follows the order of Fe > Co > Cu > Mn > Ni, which is consistent with the order of their active N contents. We suggest that the various performance enhancements of the transition metals may be the result of the joint effect of the following three aspects: the N content/active N content, metal residue, and the surface area and pore structure, but not the effect of any single factor.
Pt-based catalysts are the most efficient catalysts for low-temperature fuel cells. However, commercialization is impeded by prohibitively high costs and scarcity. One of the most effective strategies to reduce Pt loading is to deposit a monolayer or a few layers of Pt over other metal cores to form core-shell-structured electrocatalysts. In core-shell-structured electrocatalysts, the compositions of the core can be divided into five classes: single-precious metallic cores represented by Pd, Ru, and Au; singlenon-precious metallic cores represented by Cu, Ni, Co, and Fe; alloy cores containing 3d, 4d or 5d metals; and carbide and nitride cores. Of these, researchers have found that carbide and nitride cores can yield tremendous advantages over alloy cores in terms of cost and promotional activities of Pt shells. In addition, desirable shells with reasonable thicknesses and compositions have been recognized to play a dominant role in electrocatalytic performances. And recently, researchers have also found that the catalytic activity of core-shell-structured catalysts is dependent on the binding energy of the adsorbents, which is determined by the d-band center of Pt. The shifting of this d-band center in turn is mainly affected by strain and electronic effects, which can be adjusted by adjusting core compositions and shell thicknesses of catalysts. In the development of these core-shell structures, optimal synthesis methods are of primary concern because they directly determine the practical application potential of the resulting electrocatalysts. And in this article, the principles behind core-shell-structured low-Pt electrocatalysts and the developmental progresses of various synthesis methods along with the traits of each type of core and its effects on Pt shell catalytic activities are discussed. In addition, perspectives on this type of catalyst are discussed and future research directions are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.