Background: Currently, the diagnosis of invasive pulmonary aspergillosis (IPA) mainly depends on the integration of clinical, radiological and microbiological data. Artificial intelligence (AI) has shown great advantages in dealing with data-rich biological and medical challenges, but the literature on IPA diagnosis is rare.Objective: This study aimed to provide a non-invasive, objective and easy-to-use AI approach for the early diagnosis of IPA. Methods: We generated a prototype diagnostic deep learning model (IPA-NET) comprising three interrelated computation modules for the automatic diagnosis of IPA. First, IPA-NET was subjected to transfer learning using 300,000 CT images of nonfungal pneumonia from an online database. Second, training and internal test sets, including clinical features and chest CT images of patients with IPA and non-fungal pneumonia in the early stage of the disease, were independently constructed for model training and internal verification. Third, the model was further validated using an external test set.Results: IPA-NET showed a marked diagnostic performance for IPA as verified by the internal test set, with an accuracy of 96.8%, a sensitivity of 0.98, a specificity of 0.96 and an area under the curve (AUC) of 0.99. When further validated using the external test set, IPA-NET showed an accuracy of 89.7%, a sensitivity of 0.88, a specificity of 0.91 and an AUC of 0.95. Conclusion:This novel deep learning model provides a non-invasive, objective and reliable method for the early diagnosis of IPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.