The vacuole is a fundamental and dominant organelle and occupies a large part of the total cell volume in most mature plant cells. The higher-plant vacuole contains two types of proton-translocating pumps, H+-ATPase (EC 3.6.1.3) and H+-pyrophosphatase (EC 3.6.1.1), residing on the same membrane. These two enzymes generate roughly equal proton gradients across the vacuolar membrane for the secondary transport of ions and metabolites. However, the pumps respond differentially to stress in order to maintain critical functions of the vacuole. In this work, tonoplasts from etiolated mung bean seedlings (Vigna radiata L.) were used to investigate the function of these two enzymes under high osmotic pressure. At high concentrations of sucrose or sorbitol, the light scattering and volume of isolated vesicles were progressively changed. Concomitantly, enzymatic activities, proton translocation, and coupling efficiencies of these two proton-pumping enzymes were inhibited to various extents under high osmotic pressure. No significant change in enzymatic activities of purified vacuolar H+-PPase and H+-ATPase under similar conditions was observed. We thus believe that the membrane structure is an important determinant for proper function of proton pumping systems of plant vacuoles. Furthermore, kinetic analysis shows different variation in apparent Vmax but not in KM values of vacuolar H+-PPase and H+-ATPase at high osmolarity of sucrose and sorbitol, respectively, suggesting probable alterations in substrate hydrolysis reactions but not substrate-binding affinity of the enzymes. A working model is proposed to interpret supplemental roles of vacuolar H+-PPase and H+-ATPase to maintain appropriate functions of plant tonoplasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.