Agri-food trade has a profound impact on social stability and sustainable economic development. However, there are several technological problems in current agricultural product transactions. For example, it is almost impossible to improve the efficiency of transactions and maintain market stability. This paper designs a novel Food Trading System with COnsortium blockchaiN (FTSCON) to eliminate information asymmetry in the food trade, in order to establish a sustainable and credible trading environment, the system uses consortium blockchain technology to meet the challenge of different authentications and permissions for different roles in food trade. Meanwhile, we have used the online double auction mechanism to eliminate competition. We also have designed a improved Practical Byzantine Fault Tolerance (iPBFT) algorithm to improve efficiency. In addition, a case study based on a series of data from Shandong Province, China indicate that the FTSCON can achieve profit improvement of merchants. Therefore, the proposed system proved to have high commercial value.
Greenhouses can grow many off‐season vegetables and fruits, which improves people's quality of life. Greenhouses can also help crops resist natural disasters and ensure the stable growth of crops. However, it is highly challenging to carefully control the greenhouse climate. Therefore, the proposal of a greenhouse climate prediction model provides a way to solve this challenge. We focus on the six climatic factors that affect crops growth, including temperature, humidity, illumination, carbon dioxide concentration, soil temperature and soil humidity, and propose a GCP_lstm model for greenhouse climate prediction. The climate change in greenhouse is nonlinear, so we use long short‐term memory (LSTM) model to capture the dependence between historical climate data. Moreover, the short‐term climate has a greater impact on the future trend of greenhouse climate change. Therefore, we added a 5‐min time sliding window through the analysis experiment. In addition, sensors sometimes collect wrong climate data. Based on the existence of abnormal data, our model still has good robustness. We experienced our method on the data sets of three vegetables: tomato, cucumber and pepper. The comparison shows that our method is better than other comparison models.
Peach (Prunus persica) is one of the most important and widely grown fruit trees in China; however, perennial gummosis on trunks and branches is a major problem in peach orchards of Hubei Province, one of the most important peach production areas of China. In order to identify the gummosis-causing agents, diseased trunks and branches were collected from 11 peach orchards in Hubei Province. Fungal isolates were obtained from these samples, yielding three species: Botryosphaeria dothidea (anamorph Fusicoccum aesculi), B. rhodina (anamorph Lasiodiplodia theobromae), and B. obtusa (anamorph Diplodia seriata). They were identified based on conidial morphology and cultural characteristics, as well as analyses of nucleotide sequences of three genomic regions: the internal transcribed spacer region, a partial sequence of the β-tubulin gene, and the translation elongation factor 1-α gene. Fusicoccum aesculi was found in all 11 orchards but L. theobromae was found only in Shayang County in the Jingmen region and D. seriata only in Gong'an County in the Jingzhou region. Via artificial inoculation using mycelia on wounded twigs or branches, these three species were all found to be pathogenic, causing dark lesions on the twigs and branches and, sometimes, gum exudation from diseased parts. Isolates of L. theobromae were the most virulent and caused the largest lesions and most copious gummosis, and D. seriata had less gum than the other two species. This report represents the first description of L. theobromae and D. seriata as causal agents of gummosis on peach in China.
The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific (r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux (QT; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward QT and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.