The purpose of this study was to test the hypothesis that administration of epigallocatechin-3-gallate (EGCG), a polyphenol present in abundance in widely consumed tea, inhibits cell proliferation, invasion, and angiogenesis in breast cancer patients. EGCG in 400 mg capsules was orally administered three times daily to breast cancer patients undergoing treatment with radiotherapy. Parameters related to cell proliferation, invasion, and angiogenesis were analyzed while blood samples were collected at different time points to determine efficacy of the EGCG treatment. Compared to patients who received radiotherapy alone, those given radiotherapy plus EGCG for an extended time period (two to eight weeks) showed significantly lower serum levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and reduced activation of metalloproteinase-9 and metalloproteinase-2 (MMP9/MMP2). Addition of sera obtained from patients treated with combination of radiotherapy and EGCG feeding for 2–8 weeks to in vitro cultures of highly-metastatic human MDA-MB-231 breast cancer cells resulted in the following significant changes: (1) suppression of cell proliferation and invasion; (2) arrest of cell cycles at the G0/G1 phase; (3) reduction of activation of MMP9/MMP2, expressions of Bcl-2/Bax, c-Met receptor, NF-κB, and the phosphorylation of Akt. MDA-MB-231 cells exposed to 5–10 µM EGCG also showed significant augmentation of the apoptosis inducing effects of γ-radiation, concomitant with reduced NF-κB protein level and AKT phosphorylation. These results provide hitherto unreported evidence that EGCG potentiated efficacy of radiotherapy in breast cancer patients, and raise the possibility that this tea polyphenol has potential to be a therapeutic adjuvant against human metastatic breast cancer.
In this study, we investigated whether DHA, a nutritionally important n-3 unsaturated fatty acid, modulated the sensitivity of brain tumor cells to the anticancer drug, etoposide (VP16). Medulloblastoma (MB) cell lines, Daoy and D283, and glioblastoma (GBM) cell lines, U138 and U87, were exposed to DHA or VP16 alone or in combination. The effects on cell proliferation and the induction of apoptosis were determined by using MTS and Hoechest 33342/PI double staining. U87 and U138 cells were found to be insensitive to the addition of DHA and VP16, whereas the two MB cell lines showed high sensitivity. DHA or VP16 alone showed little effect on cell proliferation or death in either the MB or GBM cell lines, but pretreatment with DHA enhanced the responsiveness to VP16 in the MB cell lines. To understand the mechanisms of combined DHA and VP16 on MB cells, pathway specific oligo array analyses were performed to dissect possible signaling pathways involved. The addition of DHA and VP16, in comparison to VP16 added alone, resulted in marked suppression in the expression of several genes involved in DNA damage repair, cell proliferation, survival, invasion, and angiogenesis, including PRKDC, Survivin, PIK3R1, MAPK14, NFκB1, NFκBIA, BCL2, CD44, and MAT1. These results suggest (1) that the effects of DHA and VP16 in brain tumor cells are mediated in part by the down regulation of events involved in DNA repair and the PI3K/MAPK signaling pathways and (2) that brain tumors genotypically mimicked by MB cells may benefit from therapies combining DHA with VP16.
To determine the synergistic anti-inflammatory effects of resveratrol (RES) combined with vitamin E (VE) and its mechanism. Lipopolysaccharide (LPS)-induced RAW264.7 cells were used to determine the effect o f r esveratrol, v itamin E a nd t heir combination on the production of cellular inflammatory mediators, including NO, IL-6, TNF-α, IL-1β, TLR4 and p-NF-κBp65. The synergistic anti-inflammatory effect of the combination was evaluated by ELISA, and the effect of the combination on the TLR4, p-NF-κBp65 and p-IĸBα pathway by Western blot. The results showed that resveratrol combined with vitamin E synergistically inhibited the production of NO, LDH, MPO and inflammatory factors IL-6, TNF-α, IL-1β and TLR4 by LPSstimulated macrophages, and effectively inhibited the expression of TLR4, p-NF-κBp65 (P<0.01). Resveratrol combined with vitamin E have a synergistic anti-inflammatory effect. They can inhibit the expression of inflammatory mediators and further suppress the activation of TLR4, p-NF-κBp65 and p-IĸBα signaling pathway in LPS-induced RAW264.7 cell, which might provide a new effective way for inflammation treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.