Background Freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) are distributed in a major part of the Old World and Australia, although until recently only very few species were known from China. Results Two new species of Dugesia from Southern China are described on the basis of an integrative taxonomic approach. BI and ML phylogenetic trees based on the independent genes and on the concatenated dataset had similar topologies, only differing in some nodes that were weakly supported. Phylogenetic trees based on the concatenated dataset revealed that D. adunca Chen & Sluys, sp. nov. and D. tumida Chen & Sluys, sp. nov. are not closely related and belong to different clades. The two new species occupy separate long branches with high support values and, thus, are well-differentiated from their congeners. Separate species status of D. adunca and D. tumida is supported also by the genetic distances between the species included in our analysis, albeit that COI distances varied greatly among species. Dugesia adunca from Guangxi Province is characterized by the following features: living mature animals rather small; asymmetrical openings of the oviducts into the bursal canal; penis papilla with shape of an aquiline bill, albeit with a blunt tip; asymmetrical penis papilla, with a large antero-dorsal lip and a much smaller ventro-posterior lip; very large seminal vesicle, provided with trabeculae; small diaphragm; mixoploid karyotype with diploid complements of 2n = 2x = 16 and triploid complements of 2n = 3x = 24, with all chromosomes being metacentric. Dugesia tumida from Guangdong Province is characterized by a penis papilla provided with a large, symmetrical penial valve from the middle of which arises the small, distal section of the papilla; a duct intercalated between the seminal vesicle and the small diaphragm; ventrally displaced ejaculatory duct curving upwards before opening to the exterior; penis papilla highly asymmetrical, having a slim and long ventral portion and a short and stubby dorsal part; vasa deferentia separately opening into antero-dorsal portion of seminal vesicle; oviducts openings symmetrically into ventral portion of the bursal canal, near its opening into the atrium; mixoploid karyotype, with diploid chromosome portraits of 2n = 2x = 16, and triploid complements of 2n = 3x = 24, with all chromosomes being metacentric. In the context of the various kinds of mixoploidy and the sexualization of specimens, reproductive modalities within the genus Dugesia are shortly discussed. Conclusion Molecular, morphological, and karyological markers show that the two populations examined represent members of the genus Dugesia and constitute two new, distinct species.
Influenza A viruses in animal reservoirs repeatedly cross species barriers to infect humans. Dogs are the closest companion animals to humans, but the role of dogs in the ecology of influenza viruses is unclear. H3N2 avian influenza viruses transmitted to dogs around 2006 and have formed stable lineages. The long-term epidemic of avian-origin H3N2 virus in canines offers the best models to investigate the effect of dogs on the evolution of influenza viruses. Here, we carried out a systematic and comparative identification of the biological characteristics of H3N2 canine influenza viruses (CIVs) isolated worldwide over 10 years. We found that, during adaptation in dogs, H3N2 CIVs became able to recognize the human-like SAα2,6-Gal receptor, showed gradually increased hemagglutination (HA) acid stability and replication ability in human airway epithelial cells, and acquired a 100% transmission rate via respiratory droplets in a ferret model. We also found that human populations lack immunity to H3N2 CIVs, and even preexisting immunity derived from the present human seasonal influenza viruses cannot provide protection against H3N2 CIVs. Our results showed that canines may serve as intermediates for the adaptation of avian influenza viruses to humans. Continuous surveillance coordinated with risk assessment for CIVs is necessary.
Influenza A viruses in animal reservoirs repeatedly cross species barrier to infect humans. Once an animal-borne virus with novel antigenicity acquired the efficient human to human transmissibility, it will become epidemic in the population. Dogs are the closest animal companions to humans and canine respiratory tract expresses both SAα2,3-(avian type) and α2,6-Gal (human type) receptors. However, the role of dogs in the ecology of influenza viruses is unclear. H3N2 avian influenza viruses transmitted to dogs around 2006 and have formed stable lineages. The long-term epidemic of avian-origin H3N2 virus in canine offers the best models to investigate the effect of dogs on the evolution of influenza viruses. Here, we carried out a systematic and comparative identification of the biological characteristics of H3N2 canine influenza viruses (CIVs) isolated in the worldwide over 10 years. We found that during the adaptation of H3N2 CIVs to dogs, H3N2 CIVs became to recognize the human-like SAα2,6-Gal receptor, gradually increased HA acid stability and replication ability in human airway epithelial cells, and acquired a 100% transmission rate via respiratory droplet in ferret model, which were essential hallmarks of being adapted to humans. We also identified that the frequency of substitutions related to human adaptation has gradually increased in H3N2 CIVs, and determined four cumulative molecular changes responsible for the increased airborne transmission ability in ferrets. Our results suggested that canine may serve as an intermediate for the adaptation of avian influenza virus to human. Continuous surveillance coordinated with risk assessment for CIVs is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.