As one of the most common cancer chemotherapy drugs, cisplatin is widely used in cancer management. However, cisplatin-induced nephrotoxicity occurs in patients who receive this drug. This study is aimed at developing therapeutic agents that effectively alleviate the nephrotoxic effects during cisplatin treatment. We identified a compound named pyrocatechol (PCL) from a natural product library that significantly alleviated cisplatin-induced cytotoxicity in vitro. Pyrocatechol treatment substantially ameliorated cisplatin (20 mg · kg-1) treatment-induced neuropathological indexes, including inflammatory cell infiltration and apoptosis, in vivo. Mechanistically, pyrocatechol significantly prevented oxidative stress-induced apoptosis by activating glutathione peroxidase 4 (GPX4) to reduce reactive oxygen species (ROS) accumulation in cisplatin-treated cells. In addition, pyrocatechol significantly inhibited ROS-induced JNK/P38 activation. Thus, we found that pyrocatechol prevents ROS-mediated JNK/P38 MAPK activation, apoptosis, and cytotoxicity through GPX4. Our study demonstrated that pyrocatechol is a novel therapeutic agent against cisplatin-induced kidney injury.
Background: Alpha-ketoglutarate (AKG) or 2-oxoglutarate is a key substance in the tricarboxylic acid cycle (TCA) and has been known to play an important role in cancerogenesis and tumor progression. Renal cell carcinoma (RCC) is the most common type of kidney cancer, and it has a high mortality rate. Autophagy is a phenomenon of self-digestion, and its significance in tumor genesis and progression remains debatable. However, the mechanisms underlying how AKG regulates autophagy in RCC remain unknown. Thus, the purpose of this study was to assess the therapeutic efficacy of AKG and its molecular mechanisms.Methods: RCC cell lines 786O and ACHN were treated with varying doses of AKG for 24 h. CCK-8, Transwell, and scratch wound healing assays were utilized to evaluate the role of AKG in RCC cells. Autophagy protein and PI3K/AKT/mTOR pathway protein levels were analyzed by Western blot.Results: AKG inhibited the proliferation of RCC cells 786O and ACHN in a dosedependent manner according to the CCK-8 assay. In addition, flow cytometry and Western blot analysis revealed that AKG dose-dependently triggered apoptosis and autophagy in RCC cells. By promoting cell apoptosis and autophagy, AKG dramatically suppressed tumor growth. Mechanistically, AKG induces autophagy by promoting ROS generation and inhibiting the PI3K/AKT/mTOR pathway.Conclusions: The anti-tumor effect of AKG promotes autophagy in renal cancer cells via mediating ROS-PI3K/Akt/mTOR, and may be used as a potential anticancer drug for kidney cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.