Triacylglycerols are among the most attractive alternative raw materials for biofuel development. Current oil plant-based technologies are limited in terms of triacylglycerol production capacity and rate. These limitations may be circumvented by biotransformation of carbohydrates into lipids; however, our understanding of microbial oleaginicity remains limited. Here we present the results of a multi-omic analysis of Rhodosporidium toruloides, a robust triacylglycerol-producing fungus. The assembly of genome and transcriptome sequencing data reveals a genome of 20.2 Mb containing 8,171 protein-coding genes, the majority of which have multiple introns. Genes including a novel fatty acid synthase are predicted to participate in metabolic pathways absent in non-oleaginous yeasts. Transcriptomic and proteomic data suggest that lipid accumulation under nitrogen-limited conditions correlates with the induction of lipogenesis, nitrogenous compound recycling, macromolecule metabolism and autophagy. The multi-omic map of R. toruloides therefore provides a valuable resource for efforts to rationally engineer lipid-production pathways.
Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.
The basidiomycetous yeast Rhodosporidium toruloides represents an excellent producer for microbial lipids and carotenoids. However, further rational engineering of this unconventional yeast remains challenging partially because of the absence of efficient and reliable transformation method. In this study, we developed an Agrobacterium-mediated transformation (ATMT) protocol for effective gene integration into the R. toruloides genome. Both haploid and diploid strains were successfully modified, and the integration was confirmed by colony PCR, Western blot analysis and genome walking. We further demonstrated that multiple genes could be integrated by consecutive ATMT, leading to engineered strains simultaneously resistant to multiple antibiotics. Our results provided a practical method for functional integration and expression of exogenous genes in R. toruloides, which should facilitate the development of genetic tools and the construction of superior strains to produce biofuel molecules and biochemicals.
NAD (NAD؉ ) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD ؉ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD ؉ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD ؉ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD ؉ . We then constructed the NAD ؉ -auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD ؉ biosynthesis in cells harboring the ntt4 gene. The minimal NAD ؉ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD ؉ , while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD ؉ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD ؉ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044؋ and 9.6؋ those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.