Abstract. Atmospheric brown carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.
The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m<sup>2</sup> g<sup>−1</sup> during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m<sup>2</sup> g<sup>−1</sup> for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ<sup>−7</sup>, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m<sup>2</sup> g<sup>−1</sup> during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China
Melatonin (N-acetyl-5-methoxytryptamine) serves as an important signal molecule during plant developmental processes and multiple abiotic stress responses. However, the involvement of melatonin in thermotolerance and the underlying molecular mechanism in Arabidopsis were largely unknown. In this study, we found that the endogenous melatonin level in Arabidopsis leaves was significantly induced by heat stress treatment, and exogenous melatonin treatment conferred improved thermotolerance in Arabidopsis. The transcript levels of class A1 heat-shock factors (HSFA1s), which serve as the master regulators of heat stress responses, were significantly upregulated by heat stress and exogenous melatonin treatment in Arabidopsis. Notably, exogenous melatonin-enhanced thermotolerance was largely alleviated in HSFA1s quadruple knockout (QK) mutants, and HSFA1s-activated transcripts of heat-responsive genes (HSFA2, heat stress-associated 32 (HSA32), heat-shock protein 90 (HSP90), and 101 (HSP101)) might be contributed to melatonin-mediated thermotolerance. Taken together, this study provided direct link between melatonin and thermotolerance and indicated the involvement of HSFA1s-activated heat-responsive genes in melatonin-mediated thermotolerance in Arabidopsis.
Dioecious plant species represent an important component of terrestrial ecosystems. Yet, little is known about sexspecific responses to drought and elevated temperatures. Populus cathayana Rehd, which is a dioecious, deciduous tree species, widely distributed in the northern, central and southwestern regions of China, was employed as a model species in our study. In closed-top chamber experiments, sex-specific morphological, physiological and biochemical responses of P. cathayana to drought and different elevated temperatures were investigated. Compared with the controls, drought significantly decreased the growth and the net photosynthesis rate (A), and increased the intrinsic water use efficiency (WUEi), carbon isotope composition (d
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.