Amyloidogenesis is the process of formation of protein aggregates with fibrillar morphology. Because amyloidogenesis is linked to neurodegenerative disease, there is interest in understanding the mechanism of fibril growth. Kinetic models of amyloidogenesis require data on the number concentration and size distribution of aggregates, but this information is difficult to obtain using conventional methods. Nanoparticle tracking analysis (NTA) is a relatively new technique that may be uniquely suited for obtaining these data. In NTA, the two-dimensional (2-D) trajectory of individual particles is tracked, from which the diffusion coefficient, and, hence, hydrodynamic radius is obtained. Here we examine the validity of NTA in tracking number concentration and size of DNA, as a model of a fibrillar macromolecule. We use NTA to examine three amyloidogenic materials: beta-amyloid, transthyretin, and polyglutamine-containing peptides. Our results are instructive in demonstrating the advantages and some limitations of single-particle diffusion measurements for investigating aggregation in protein systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.