This paper presents an improved current source equivalent model method to determine the short-circuit current of a distribution system with multiple fixed-speed and variable-speed induction generators (IGs). The correlation coefficients of flux components between stator and rotor under the unsymmetrical fault are analyzed using the positive and negative sequence steady-state equivalent circuits of an IG. The terminal voltage and current responses of fixed-speed and variable-speed IGs with and without the rotor slip changes under different penetration levels are compared to investigate the coupling relation between the short-circuit currents of IGs and the nodal voltages in the distribution network. Then the transient equivalent potential of an IG at the grid fault instant is derived. Sequence components of the short-circuit current in the network can be determined using the proposed technique. The correctness of the proposed method is verified using dynamic simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.