The Hamburg wheel tracking test (HWTT) has been widely used as a standard laboratory test to evaluate the moisture susceptibility and rutting resistance of asphalt mixtures. The stripping infection point and the rut depth at a certain number of load cycles are two common parameters obtained from the test. Although these parameters have been widely adopted by several transportation agencies, the accuracy and variability in characterizing mixture properties of these parameters have been questioned. In this study, a novel method to analyze the HWTT results is introduced and three new parameters are proposed to measure the moisture susceptibility and rutting resistance of asphalt mixtures. The new parameters are compared against the current ones to assess their capability to discriminate between three types of asphalt mixtures with different performance results in the HWTT. Significant advantages in characterizing mixture resistance to stripping and rutting are demonstrated by the new parameters. In addition, the effect of antistripping additives and recycled materials on mixture performance in the HWTT is evaluated with mixtures from a field project in Texas. Test results for the new parameters show that the addition of antistripping additives improves the susceptibility of asphalt mixtures to moisture. Specifically, the use of lime is more beneficial for improving mixture performance than a liquid antistripping agent. Conversely, the addition of recycled materials provides mixtures with increased moisture susceptibility but improved rutting resistance.
Abstract. This study concentrates on the characteristics of field-aligned currents (FACs) in both hemispheres during the extreme storms in October and November 2003. Highresolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer) than in the Northern (winter) Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in D st and the interplanetary magnetic field component B z , in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1) the equatorward shift of FACs on the dayside is directly controlled by the southward IMF B z and there is a saturation of the latitudinal displacement for large value of negative B z . In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2) The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the D st index. (3) The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25 • in latitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.